Tyranowski Tomasz M
Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, Garching 85748, Germany.
Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, Garching 85748, Germany.
Proc Math Phys Eng Sci. 2021 Aug;477(2252):20210167. doi: 10.1098/rspa.2021.0167. Epub 2021 Aug 25.
In this work, we recast the collisional Vlasov-Maxwell and Vlasov-Poisson equations as systems of coupled stochastic and partial differential equations, and we derive stochastic variational principles which underlie such reformulations. We also propose a stochastic particle method for the collisional Vlasov-Maxwell equations and provide a variational characterization of it, which can be used as a basis for a further development of stochastic structure-preserving particle-in-cell integrators.
在这项工作中,我们将碰撞的弗拉索夫 - 麦克斯韦方程和弗拉索夫 - 泊松方程重新表述为耦合的随机微分方程和偏微分方程系统,并推导了作为此类重新表述基础的随机变分原理。我们还为碰撞的弗拉索夫 - 麦克斯韦方程提出了一种随机粒子方法,并给出了它的变分特征,这可作为进一步发展随机保结构的细胞粒子积分器的基础。