Suppr超能文献

基于多输入卷积神经网络与数据增强的髌股疼痛综合征诊断。

Diagnosis of Patellofemoral Pain Syndrome Based on a Multi-Input Convolutional Neural Network With Data Augmentation.

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou, China.

Fujian Key Laboratory of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, China.

出版信息

Front Public Health. 2021 Feb 11;9:643191. doi: 10.3389/fpubh.2021.643191. eCollection 2021.

Abstract

Patellofemoral pain syndrome (PFPS) is a common disease of the knee. Despite its high incidence rate, its specific cause remains unclear. The artificial neural network model can be used for computer-aided diagnosis. Traditional diagnostic methods usually only consider a single factor. However, PFPS involves different biomechanical characteristics of the lower limbs. Thus, multiple biomechanical characteristics must be considered in the neural network model. The data distribution between different characteristic dimensions is different. Thus, preprocessing is necessary to make the different characteristic dimensions comparable. However, a general rule to follow in the selection of biomechanical data preprocessing methods is lacking, and different preprocessing methods have their own advantages and disadvantages. Therefore, this paper proposes a multi-input convolutional neural network (MI-CNN) method that uses two input channels to mine the information of lower limb biomechanical data from two mainstream data preprocessing methods (standardization and normalization) to diagnose PFPS. Data were augmented by horizontally flipping the multi-dimensional time-series signal to prevent network overfitting and improve model accuracy. The proposed method was tested on the walking and running datasets of 41 subjects (26 patients with PFPS and 15 pain-free controls). Three joint angles of the lower limbs and surface electromyography signals of seven muscles around the knee joint were used as input. MI-CNN was used to automatically extract features to classify patients with PFPS and pain-free controls. Compared with the traditional single-input convolutional neural network (SI-CNN) model and previous methods, the proposed MI-CNN method achieved a higher detection sensitivity of 97.6%, a specificity of 76.0%, and an accuracy of 89.0% on the running dataset. The accuracy of SI-CNN in the running dataset was about 82.5%. The results prove that combining the appropriate neural network model and biomechanical analysis can establish an accurate, convenient, and real-time auxiliary diagnosis system for PFPS to prevent misdiagnosis.

摘要

髌股疼痛综合征(PFPS)是一种常见的膝关节疾病。尽管其发病率很高,但具体病因仍不清楚。人工神经网络模型可用于计算机辅助诊断。传统的诊断方法通常只考虑单一因素。然而,PFPS 涉及下肢不同的生物力学特征。因此,神经网络模型必须考虑多个生物力学特征。不同特征维度之间的数据分布不同。因此,需要进行预处理以使不同特征维度具有可比性。但是,缺乏选择生物力学数据预处理方法的一般规则,不同的预处理方法各有优缺点。因此,本文提出了一种多输入卷积神经网络(MI-CNN)方法,该方法使用两个输入通道从两种主流的数据预处理方法(标准化和归一化)中挖掘下肢生物力学数据的信息,以诊断 PFPS。通过水平翻转多维时间序列信号来对数据进行扩充,以防止网络过拟合并提高模型准确性。所提出的方法在 41 名受试者(26 名 PFPS 患者和 15 名无痛对照组)的行走和跑步数据集上进行了测试。下肢三个关节角度和膝关节周围 7 块肌肉的表面肌电信号作为输入。MI-CNN 用于自动提取特征以对 PFPS 患者和无痛对照组进行分类。与传统的单输入卷积神经网络(SI-CNN)模型和以前的方法相比,所提出的 MI-CNN 方法在跑步数据集上的检测灵敏度达到 97.6%,特异性为 76.0%,准确性为 89.0%。SI-CNN 在跑步数据集上的准确率约为 82.5%。结果证明,结合适当的神经网络模型和生物力学分析,可以建立一个准确、方便、实时的 PFPS 辅助诊断系统,以防止误诊。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac5a/7902860/ea2d81002736/fpubh-09-643191-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验