文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells.

作者信息

Yu Sooyoun, Myung Nosang V

机构信息

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States.

出版信息

Front Chem. 2021 Feb 10;8:620153. doi: 10.3389/fchem.2020.620153. eCollection 2020.


DOI:10.3389/fchem.2020.620153
PMID:33644003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7902792/
Abstract

Direct electron transfer (DET), which requires no mediator to shuttle electrons from enzyme active site to the electrode surface, minimizes complexity caused by the mediator and can further enable miniaturization for biocompatible and implantable devices. However, because the redox cofactors are typically deeply embedded in the protein matrix of the enzymes, electrons generated from oxidation reaction cannot easily transfer to the electrode surface. In this review, methods to improve the DET rate for enhancement of enzymatic fuel cell performances are summarized, with a focus on the more recent works (past 10 years). Finally, progress on the application of DET-enabled EFC to some biomedical and implantable devices are reported.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/053d244b4b94/fchem-08-620153-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/af3e71c3f0c0/fchem-08-620153-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/78a442a853c6/fchem-08-620153-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/2754e8b6049e/fchem-08-620153-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/f95bde5bc844/fchem-08-620153-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/092133387977/fchem-08-620153-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/da18cf1fbd86/fchem-08-620153-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/053d244b4b94/fchem-08-620153-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/af3e71c3f0c0/fchem-08-620153-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/78a442a853c6/fchem-08-620153-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/2754e8b6049e/fchem-08-620153-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/f95bde5bc844/fchem-08-620153-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/092133387977/fchem-08-620153-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/da18cf1fbd86/fchem-08-620153-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e195/7902792/053d244b4b94/fchem-08-620153-g0007.jpg

相似文献

[1]
Recent Advances in the Direct Electron Transfer-Enabled Enzymatic Fuel Cells.

Front Chem. 2021-2-10

[2]
Direct Electron Transfer-Type Oxidoreductases for Biomedical Applications.

Annu Rev Biomed Eng. 2024-7

[3]
Construction of Uniform Monolayer- and Orientation-Tunable Enzyme Electrode by a Synthetic Glucose Dehydrogenase without Electron-Transfer Subunit via Optimized Site-Specific Gold-Binding Peptide Capable of Direct Electron Transfer.

ACS Appl Mater Interfaces. 2018-8-15

[4]
Mediatorless glucose biosensor and direct electron transfer type glucose/air biofuel cell enabled with carbon nanodots.

Anal Chem. 2015-3-3

[5]
Fabrication and characterization of electrically conducting electrochemically synthesized polypyrrole-based enzymatic biofuel cell anode with biocompatible redox mediator vitamin K.

Sci Rep. 2024-2-9

[6]
Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System.

Int J Mol Sci. 2023-1-17

[7]
Two-dimensional graphene paper supported flexible enzymatic fuel cells.

Nanoscale Adv. 2019-5-10

[8]
Bioelectrocatalysis at carbon nanotubes.

Methods Enzymol. 2020

[9]
Mutagenesis Study of the Cytochrome c Subunit Responsible for the Direct Electron Transfer-Type Catalytic Activity of FAD-Dependent Glucose Dehydrogenase.

Int J Mol Sci. 2018-3-21

[10]
Enzyme-Based Biosensors: Tackling Electron Transfer Issues.

Sensors (Basel). 2020-6-21

引用本文的文献

[1]
Fabrication and characterization of electrically conducting electrochemically synthesized polypyrrole-based enzymatic biofuel cell anode with biocompatible redox mediator vitamin K.

Sci Rep. 2024-2-9

[2]
Research Progress in Enzyme Biofuel Cells Modified Using Nanomaterials and Their Implementation as Self-Powered Sensors.

Molecules. 2024-1-3

[3]
Helical versus Flat Bis-Ferrocenyl End-Capped Peptides: The Influence of the Molecular Skeleton on Redox Properties.

Molecules. 2022-9-19

[4]
Nanomaterials in bioelectrochemical devices: on applications enhancing their positive effect.

3 Biotech. 2022-9

[5]
Direct Bioelectrocatalytic Oxidation of Glucose by Membrane Fractions in PEDOT:PSS/TEG-Modified Biosensors.

Biosensors (Basel). 2021-5-6

本文引用的文献

[1]
Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries.

Sci Rep. 2020-10-6

[2]
Direct Electron Transfer of Cellobiose Dehydrogenase on Positively Charged Polyethyleneimine Gold Nanoparticles.

Chempluschem. 2017-4

[3]
A shriveled rectangular carbon tube with the concave surface for high-performance enzymatic glucose/O biofuel cells.

Biosens Bioelectron. 2019-2-23

[4]
High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers.

Nat Commun. 2018-10-26

[5]
A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells.

Nat Commun. 2018-9-10

[6]
Effect of Carbon Nanotubes on Direct Electron Transfer and Electrocatalytic Activity of Immobilized Glucose Oxidase.

ACS Omega. 2018-1-31

[7]
Direct Electrochemistry of Bilirubin Oxidase from Magnaporthe orizae on Covalently-Functionalized MWCNT for the Design of High-Performance Oxygen-Reducing Biocathodes.

Chemistry. 2018-5-15

[8]
The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.

Bioelectrochemistry. 2017-12-20

[9]
A novel three-dimensional carbonized PANI@CNTs network for enhanced enzymatic biofuel cell.

Biosens Bioelectron. 2017-10-7

[10]
DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and HO.

J Biotechnol. 2017-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索