Suppr超能文献

通过固定在自组装单层上来研究依赖黄素腺嘌呤二核苷酸的葡萄糖脱氢酶与直接电子转移亚基的电化学行为。

The electrochemical behavior of a FAD dependent glucose dehydrogenase with direct electron transfer subunit by immobilization on self-assembled monolayers.

机构信息

Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.

Harrington Program of Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States.

出版信息

Bioelectrochemistry. 2018 Jun;121:1-6. doi: 10.1016/j.bioelechem.2017.12.008. Epub 2017 Dec 20.

Abstract

Continuous glucose monitoring (CGM) is a vital technology for diabetes patients by providing tight glycemic control. Currently, many commercially available CGM sensors use glucose oxidase (GOD) as sensor element, but this enzyme is not able to transfer electrons directly to the electrode without oxygen or an electronic mediator. We previously reported a mutated FAD dependent glucose dehydrogenase complex (FADGDH) capable of direct electron transfer (DET) via an electron transfer subunit without involving oxygen or a mediator. In this study, we investigated the electrochemical response of DET by controlling the immobilization of DET-FADGDH using 3 types of self-assembled monolayers (SAMs) with varying lengths. With the employment of DET-FADGDH and SAM, high current densities were achieved without being affected by interfering substances such as acetaminophen and ascorbic acid. Additionally, the current generated from DET-FADGDH electrodes decreased with increasing length of SAM, suggesting that the DET ability can be affected by the distance between the enzyme and the electrode. These results indicate the feasibility of controlling the immobilization state of the enzymes on the electrode surface.

摘要

连续血糖监测(CGM)通过提供严格的血糖控制,是糖尿病患者的一项重要技术。目前,许多市售的 CGM 传感器使用葡萄糖氧化酶(GOD)作为传感器元件,但这种酶在没有氧气或电子介体的情况下,无法将电子直接转移到电极上。我们之前报道了一种突变的 FAD 依赖性葡萄糖脱氢酶复合物(FADGDH),它能够通过电子转移亚基进行直接电子转移(DET),而不涉及氧气或介体。在这项研究中,我们通过控制使用三种不同长度的自组装单层(SAM)来固定 DET-FADGDH,从而研究了 DET 的电化学响应。通过使用 DET-FADGDH 和 SAM,即使存在对乙酰氨基酚和抗坏血酸等干扰物质,也实现了高电流密度,而不受其影响。此外,来自 DET-FADGDH 电极的电流随着 SAM 长度的增加而降低,这表明 DET 能力可能会受到酶和电极之间距离的影响。这些结果表明可以控制酶在电极表面上的固定状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验