Suppr超能文献

用于从水溶液中去除甲基橙的GO/MIL-101(Fe)复合材料的制备

Preparation of a GO/MIL-101(Fe) Composite for the Removal of Methyl Orange from Aqueous Solution.

作者信息

Liu Zhuannian, He Wenwen, Zhang Qingyun, Shapour Habiba, Bakhtari Mohammad Fahim

机构信息

College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.

出版信息

ACS Omega. 2021 Feb 8;6(7):4597-4608. doi: 10.1021/acsomega.0c05091. eCollection 2021 Feb 23.

Abstract

The composite material graphene oxide (GO)/MIL-101(Fe) was prepared by a simple one-pot reaction method. MIL-101(Fe) grown on the surface of a GO layer was confirmed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The adsorption performance and the mechanism of MIL-101(Fe) and GO/MIL-101(Fe) for methyl orange (MO) were studied. The results have shown that the adsorption capacity of GO/MIL-101(Fe) for MO was significantly better than that of MIL-101(Fe), and its capacity was the highest when 10% GO was added. The Langmuir specific surface areas of MIL-101(Fe) and GO/MIL-101(Fe) were 1003.47 and 888.289 m·g, respectively. The maximum adsorption capacities of MO on MIL-101 (Fe) and 10% GO/MIL-101 (Fe) were 117.74 and 186.20 mg·g, respectively. The adsorption isotherms were described by the Langmuir model, and the adsorption kinetic data suggested the pseudo-second order to be the best fit model. GO/MIL-101(Fe) can be reused at least three times.

摘要

采用简单的一锅法反应制备了氧化石墨烯(GO)/MIL-101(Fe)复合材料。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和热重分析(TGA)证实了在GO层表面生长有MIL-101(Fe)。研究了MIL-101(Fe)和GO/MIL-101(Fe)对甲基橙(MO)的吸附性能及吸附机理。结果表明,GO/MIL-101(Fe)对MO的吸附容量明显优于MIL-101(Fe),添加10%GO时其吸附容量最高。MIL-101(Fe)和GO/MIL-101(Fe)的朗缪尔比表面积分别为1003.47和888.289 m·g。MO在MIL-101(Fe)和10%GO/MIL-101(Fe)上的最大吸附容量分别为117.74和186.20 mg·g。吸附等温线用朗缪尔模型描述,吸附动力学数据表明拟二级模型拟合效果最佳。GO/MIL-101(Fe)至少可重复使用三次。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c37/7905816/e80cdd2900da/ao0c05091_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验