Barzegar Farshad, Pavlenko Vladimir, Zahid Muhammad, Bello Abdulhakeem, Xia Xiaohua, Manyala Ncholu, Ozoemena Kenneth I, Abbas Qamar
Electrical, Electronic and Computer Engineering Department, University of Pretoria, Pretoria 0002, South Africa.
Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan.
ACS Appl Energy Mater. 2021 Feb 22;4(2):1763-1773. doi: 10.1021/acsaem.0c02908. Epub 2021 Jan 19.
Controlling the porosity of carbon-based electrodes is key toward performance improvement of charge storage devices, e.g., supercapacitors, which deliver high power via fast charge/discharge of ions at the electrical double layer (EDL). Here, eco-friendly preparation of carbons with adaptable nanopores from polymers obtained via microwave-assisted cross-linking of poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) is reported. The polymeric hydrogels possess porous and foam-like structures, giving excellent control of porosity at the precursor level, which are then subjected to activation at high temperatures of 700-900 °C to prepare carbons with a surface area of 1846 m g and uniform distribution of micro-, meso-, and macropores. Then, graphene as an additive to hydrogel precursor improves the surface characteristics and elaborates porous texture, giving composite materials with a surface area of 3107 m g. These carbons show an interconnected porous structure and bimodal pore size distribution suitable for facile ionic transport. When implemented in symmetric supercapacitor configuration with aqueous 5 mol L NaNO electrolyte, a capacitance of 163 F g (per average mass of one electrode) and stable evolution of capacitance, coulombic, and energy efficiency during 10 000 galvanostatic charge/discharge up to 1.6 V at 1.0 A g have been achieved.
控制碳基电极的孔隙率是提高电荷存储设备(如超级电容器)性能的关键,超级电容器通过在双电层(EDL)处快速离子充电/放电来提供高功率。在此,报道了通过微波辅助交联聚乙烯醇(PVA)和聚乙烯吡咯烷酮(PVP)从聚合物中制备具有适应性纳米孔的环保型碳材料。聚合物水凝胶具有多孔和泡沫状结构,在前体水平上能出色地控制孔隙率,然后在700-900°C的高温下进行活化,以制备表面积为1846 m²/g且微孔、介孔和大孔分布均匀的碳材料。然后,石墨烯作为水凝胶前体的添加剂改善了表面特性并细化了多孔结构,得到了表面积为3107 m²/g的复合材料。这些碳材料呈现出相互连接的多孔结构和适合离子轻松传输的双峰孔径分布。当以5 mol/L NaNO₃水溶液为电解质,采用对称超级电容器配置时,在1.0 A/g的电流密度下,高达1.6 V的10000次恒电流充放电过程中,实现了163 F/g(基于一个电极的平均质量)的电容以及电容、库仑效率和能量效率的稳定变化。