Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain.
Soft Matter. 2021 Mar 28;17(12):3367-3379. doi: 10.1039/d0sm01733g. Epub 2021 Mar 1.
Cell membranes interact with a myriad of curvature-active proteins that control membrane morphology and are responsible for mechanosensation and mechanotransduction. Some of these proteins, such as those containing BAR domains, are curved and elongated, and hence may adopt different states of orientational order, from isotropic to maximize entropy to nematic as a result of crowding or to adapt to the curvature of the underlying membrane. Here, extending the classical work of Onsager for ordering in hard particle systems and that of [E. S. Nascimento et al., Phys. Rev. E, 2017, 96, 022704], we develop a mean-field density functional theory to predict the orientational order and evaluate the free energy of ensembles of elongated and curved objects on curved membranes. This theory depends on the microscopic properties of the particles and explains how a density-dependent isotropic-to-nematic transition is modified by anisotropic curvature. We also examine the coexistence of isotropic and nematic phases. This theory predicts how ordering depends on geometry but we assume here that the geometry is fixed. It also lays the ground to understand the interplay between membrane reshaping by BAR proteins and molecular order, examined by [Le Roux et al., submitted, 2020].
细胞膜与众多控制膜形态的曲率激活蛋白相互作用,这些蛋白负责机械感觉和机械转导。其中一些蛋白,如含有 BAR 结构域的蛋白,是弯曲和拉长的,因此可能会由于拥挤或适应基底膜的曲率而呈现出不同的取向有序状态,从各向同性到最大熵到向列相。在这里,我们扩展了硬粒子系统中 Onsager 关于有序的经典工作,以及 [E.S. Nascimento 等人,物理评论 E,2017 年,96,022704],我们开发了一种平均场密度泛函理论来预测在弯曲膜上的弯曲和拉长物体的取向有序和评估其自由能。该理论取决于粒子的微观特性,并解释了密度依赖性各向同性到向列相转变如何被各向异性曲率所改变。我们还研究了各向同性和向列相共存的情况。该理论预测了有序性如何依赖于几何形状,但这里我们假设几何形状是固定的。它还为理解 BAR 蛋白重塑膜和分子有序之间的相互作用奠定了基础,这一点由 [Le Roux 等人,提交,2020] 进行了研究。