Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK.
Angew Chem Int Ed Engl. 2021 May 3;60(19):10526-10530. doi: 10.1002/anie.202101376. Epub 2021 Mar 26.
The structure of life's first genetic polymer is a question of intense ongoing debate. The "RNA world theory" suggests RNA was life's first nucleic acid. However, ribonucleotides are complex chemical structures, and simpler nucleic acids, such as threose nucleic acid (TNA), can carry genetic information. In principle, nucleic acids like TNA could have played a vital role in the origins of life. The advent of any genetic polymer in life requires synthesis of its monomers. Here we demonstrate a high-yielding, stereo-, regio- and furanosyl-selective prebiotic synthesis of threo-cytidine 3, an essential component of TNA. Our synthesis uses key intermediates and reactions previously exploited in the prebiotic synthesis of the canonical pyrimidine ribonucleoside cytidine 1. Furthermore, we demonstrate that erythro-specific 2',3'-cyclic phosphate synthesis provides a mechanism to photochemically select TNA cytidine. These results suggest that TNA may have coexisted with RNA during the emergence of life.
生命中第一种遗传聚合物的结构是一个激烈的持续争论的问题。“RNA 世界理论”表明 RNA 是生命的第一种核酸。然而,核糖核苷酸是复杂的化学结构,而像 threose nucleic acid(TNA)这样更简单的核酸可以携带遗传信息。原则上,像 TNA 这样的核酸可能在生命起源中发挥了至关重要的作用。任何遗传聚合物在生命中的出现都需要其单体的合成。在这里,我们展示了 threo-cytidine 3 的高产、立体、区域和呋喃选择性的前生物合成,这是 TNA 的重要组成部分。我们的合成使用了以前在经典嘧啶核糖核苷 cytidine 1 的前生物合成中利用的关键中间体和反应。此外,我们证明了 erythro-特异性 2',3'-环磷酸合成提供了一种通过光化学选择 TNA 胞嘧啶的机制。这些结果表明,在生命出现的过程中,TNA 可能与 RNA 共存。