Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China.
Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences (CAS), Wuhan, 430071, China.
Adv Mater. 2021 Apr;33(13):e2008540. doi: 10.1002/adma.202008540. Epub 2021 Mar 1.
Nanotheranostic agents of gold nanomaterials in the second near-infrared (NIR-II) window have attracted significant attention in cancer management, owing to the reduced background signal and deeper penetration depth in tissues. However, it is still challenging to modulate the localized surface plasmon resonance (LSPR) of gold nanomaterials from the first near-infrared (NIR-I) to NIR-II region. Herein, a plasmonic modulation strategy of gold nanorods (GNRs) through manganese dioxide coating is developed for NIR-II photoacoustic/magnetic resonance (MR) duplex-imaging-guided NIR-II photothermal chemodynamic therapy. GNRs are coated with silica dioxide (SiO ) and then covered with magnesium dioxide (MnO ) to obtain the final product of GNR@SiO @MnO (denoted as GSM). The LSPR peak of GNRs could be tuned by adjusting the thickness of the MnO layer. Theoretical simulations reveal that this plasmonic modulation is mainly due to the change of refraction index around the GNRs after coating with the MnO layer. Additionally, the MnO layer is demonstrated to degrade into Mn ions in response to peroxide and acidic protons in the tumor microenvironment, which allows for MR imaging and chemodynamic therapy. This plasmonic modulation strategy can be adapted to other metal nanomaterials and the construction of a new class of NIR-II nanotheranostics.
金纳米材料的第二代近红外(NIR-II)窗纳米诊疗试剂在癌症治疗中引起了广泛关注,因为其在组织中的背景信号降低且穿透深度更深。然而,要将金纳米材料的局域表面等离子体共振(LSPR)从近红外(NIR-I)调谐到 NIR-II 区域仍然具有挑战性。在此,通过二氧化锰(MnO )涂层开发了金纳米棒(GNRs)的等离子体调制策略,用于 NIR-II 光声/磁共振(MR)双模式成像引导的 NIR-II 光热化学动力学治疗。GNRs 首先用二氧化硅(SiO )进行涂层,然后用氧化镁(MnO )覆盖,以获得 GNR@SiO @MnO 的最终产物(表示为 GSM)。通过调整 MnO 层的厚度可以调节 GNRs 的 LSPR 峰。理论模拟表明,这种等离子体调制主要归因于 MnO 层涂层后 GNRs 周围折射率的变化。此外,MnO 层被证明可以响应肿瘤微环境中的过氧化物和酸性质子而降解为 Mn 离子,从而允许进行 MR 成像和化学动力学治疗。这种等离子体调制策略可以适用于其他金属纳米材料,并构建一类新的 NIR-II 纳米诊疗试剂。
Mil Med Res. 2025-7-30
Nanomedicine (Lond). 2025-6
Small Sci. 2022-8-2
Mater Today Bio. 2025-2-15
Bioeng Transl Med. 2024-4-18