文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于研究细菌趋化性、药物测试和生物膜形成的微流控装置。

Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation.

作者信息

Pérez-Rodríguez Sandra, García-Aznar José Manuel, Gonzalo-Asensio Jesús

机构信息

Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, 50018, Spain.

Multiscale in Mechanical and Biological Engineering (M2BE), IIS-Aragón, Zaragoza, Spain.

出版信息

Microb Biotechnol. 2022 Feb;15(2):395-414. doi: 10.1111/1751-7915.13775. Epub 2021 Mar 1.


DOI:10.1111/1751-7915.13775
PMID:33645897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8867988/
Abstract

Some bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.

摘要

一些细菌已经共同进化,与植物、动物或人类建立共生或致病关系。与人类接触时,这些细菌会引发多种疾病。因此,在单细胞水平上了解细菌表型对于开发有益应用至关重要。传统微生物技术为我们提供了关于这些生物体的丰富知识;然而,它们也存在局限性,比如一些细菌难以培养、细菌群体的异质性以及难以重现某些物理或生物条件。微流控技术是一种新兴技术,可对当前的生物学检测起到补充作用。由于微流控技术处理的是微米级体积,它能够对测试条件进行精细控制。此外,它还能构建三维(3D)条件,在这种条件下可以整合多个过程并生成梯度,从而模拟生理3D环境。在此,我们回顾一些基于微流控技术的关键研究,这些研究描述了不同微环境条件对细菌反应、生物膜形成和抗微生物耐药性的影响。为此,我们根据微流控设备的设计将不同研究分为六组:(i)线性通道,(ii)混合通道,(iii)多层结构,(iv)多孔设备,(v)地形学设备和(vi)液滴微流控技术。因此,与传统方法相比,我们强调了使用基于微流控技术研究细菌表型的潜力和可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/723072952a6d/MBT2-15-395-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/c9e787958e9d/MBT2-15-395-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/61767342c82f/MBT2-15-395-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/fd8bd4e48ddb/MBT2-15-395-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/8efa27f408fc/MBT2-15-395-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/e5f6a311b545/MBT2-15-395-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/8241109354b0/MBT2-15-395-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/482f7f2f217c/MBT2-15-395-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/723072952a6d/MBT2-15-395-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/c9e787958e9d/MBT2-15-395-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/61767342c82f/MBT2-15-395-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/fd8bd4e48ddb/MBT2-15-395-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/8efa27f408fc/MBT2-15-395-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/e5f6a311b545/MBT2-15-395-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/8241109354b0/MBT2-15-395-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/482f7f2f217c/MBT2-15-395-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b3c/8867988/723072952a6d/MBT2-15-395-g016.jpg

相似文献

[1]
Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation.

Microb Biotechnol. 2022-2

[2]
A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.

J Nanobiotechnology. 2020-11-11

[3]
Microfluidic approaches to bacterial biofilm formation.

Molecules. 2012-8-15

[4]
Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations.

Acc Chem Res. 2022-3-1

[5]
Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance.

Small. 2021-3

[6]
In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device.

Lab Chip. 2010-10-11

[7]
High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

Lab Chip. 2016-4-26

[8]
Emerging 3D printing technologies and methodologies for microfluidic development.

Anal Methods. 2022-8-4

[9]
A survey of 3D printing technology applied to paper microfluidics.

Lab Chip. 2021-12-21

[10]
Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.

Molecules. 2019-8-7

引用本文的文献

[1]
New Methodologies as Opportunities in the Study of Bacterial Biofilms, Including Food-Related Applications.

Microorganisms. 2025-5-2

[2]
Alleviation of Plant Abiotic Stress: Mechanistic Insights into Emerging Applications of Phosphate-Solubilizing Microorganisms in Agriculture.

Plants (Basel). 2025-5-21

[3]
Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges.

Microbiol Mol Biol Rev. 2025-3-27

[4]
Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review.

Front Cell Infect Microbiol. 2024

[5]
Testing the sequence of successional processes in miniature ecosystems.

Microbiol Spectr. 2024-10-3

[6]
Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices.

Biosensors (Basel). 2024-6-8

[7]
Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions.

Methods Microbiol. 2023

[8]
Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes.

ACS Biomater Sci Eng. 2024-3-11

[9]
Microfluidics for adaptation of microorganisms to stress: design and application.

Appl Microbiol Biotechnol. 2024-1-22

[10]
The Potential Clinical Applications of a Microfluidic Lab-on-a-Chip for the Identification and Antibiotic Susceptibility Testing of -Associated Endodontic Infections: A Systematic Review.

Dent J (Basel). 2023-12-26

本文引用的文献

[1]
Highly parallelized droplet cultivation and prioritization of antibiotic producers from natural microbial communities.

Elife. 2021-3-25

[2]
Development of a Microfluidic Droplet-Based Microbioreactor for Microbial Cultivation.

ACS Biomater Sci Eng. 2020-6-8

[3]
Microsystems for biofilm characterization and sensing - A review.

Biofilm. 2019-12-18

[4]
A lung-on-chip model of early infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth.

Elife. 2020-11-24

[5]
Hybrid sideways/longitudinal swimming in the monoflagellate : from aerotactic band to biofilm.

J R Soc Interface. 2020-10

[6]
The importance of intracellular bacterial biofilm in infectious diseases.

Microb Pathog. 2020-10

[7]
Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria.

mSystems. 2020-6-23

[8]
Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes.

Elife. 2020-6-17

[9]
Microfluidic droplet application for bacterial surveillance in fresh-cut produce wash waters.

PLoS One. 2020-6-9

[10]
Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device.

Biotechniques. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索