Pérez-Rodríguez Sandra, García-Aznar José Manuel, Gonzalo-Asensio Jesús
Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, 50018, Spain.
Multiscale in Mechanical and Biological Engineering (M2BE), IIS-Aragón, Zaragoza, Spain.
Microb Biotechnol. 2022 Feb;15(2):395-414. doi: 10.1111/1751-7915.13775. Epub 2021 Mar 1.
Some bacteria have coevolved to establish symbiotic or pathogenic relationships with plants, animals or humans. With human association, the bacteria can cause a variety of diseases. Thus, understanding bacterial phenotypes at the single-cell level is essential to develop beneficial applications. Traditional microbiological techniques have provided great knowledge about these organisms; however, they have also shown limitations, such as difficulties in culturing some bacteria, the heterogeneity of bacterial populations or difficulties in recreating some physical or biological conditions. Microfluidics is an emerging technique that complements current biological assays. Since microfluidics works with micrometric volumes, it allows fine-tuning control of the test conditions. Moreover, it allows the recruitment of three-dimensional (3D) conditions, in which several processes can be integrated and gradients can be generated, thus imitating physiological 3D environments. Here, we review some key microfluidic-based studies describing the effects of different microenvironmental conditions on bacterial response, biofilm formation and antimicrobial resistance. For this aim, we present different studies classified into six groups according to the design of the microfluidic device: (i) linear channels, (ii) mixing channels, (iii) multiple floors, (iv) porous devices, (v) topographic devices and (vi) droplet microfluidics. Hence, we highlight the potential and possibilities of using microfluidic-based technology to study bacterial phenotypes in comparison with traditional methodologies.
一些细菌已经共同进化,与植物、动物或人类建立共生或致病关系。与人类接触时,这些细菌会引发多种疾病。因此,在单细胞水平上了解细菌表型对于开发有益应用至关重要。传统微生物技术为我们提供了关于这些生物体的丰富知识;然而,它们也存在局限性,比如一些细菌难以培养、细菌群体的异质性以及难以重现某些物理或生物条件。微流控技术是一种新兴技术,可对当前的生物学检测起到补充作用。由于微流控技术处理的是微米级体积,它能够对测试条件进行精细控制。此外,它还能构建三维(3D)条件,在这种条件下可以整合多个过程并生成梯度,从而模拟生理3D环境。在此,我们回顾一些基于微流控技术的关键研究,这些研究描述了不同微环境条件对细菌反应、生物膜形成和抗微生物耐药性的影响。为此,我们根据微流控设备的设计将不同研究分为六组:(i)线性通道,(ii)混合通道,(iii)多层结构,(iv)多孔设备,(v)地形学设备和(vi)液滴微流控技术。因此,与传统方法相比,我们强调了使用基于微流控技术研究细菌表型的潜力和可能性。
Microb Biotechnol. 2022-2
J Nanobiotechnology. 2020-11-11
Molecules. 2012-8-15
Anal Methods. 2022-8-4
Lab Chip. 2021-12-21
Microbiol Mol Biol Rev. 2025-3-27
Front Cell Infect Microbiol. 2024
Microbiol Spectr. 2024-10-3
Biosensors (Basel). 2024-6-8
Methods Microbiol. 2023
Appl Microbiol Biotechnol. 2024-1-22
ACS Biomater Sci Eng. 2020-6-8
Biofilm. 2019-12-18
J R Soc Interface. 2020-10
Microb Pathog. 2020-10