CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France.
CNRS, Laboratoire de la Molécule aux Nano-objets; Réactivité, Interactions et Spectroscopies, MONARIS, Sorbonne Université, 4 Place Jussieu, Case Courier 840, F-75005 Paris, France.
Chem Rev. 2021 Apr 14;121(7):3627-3700. doi: 10.1021/acs.chemrev.0c01120. Epub 2021 Mar 1.
Nanocrystals (NCs) are one of the few nanotechnologies to have attained mass market applications with their use as light sources for displays. This success relies on Cd- and In-based wide bandgap materials. NCs are likely to be employed in more applications as they provide a versatile platform for optoelectronics, specifically, infrared optoelectronics. The existing material technologies in this range of wavelengths are generally not cost-effective, which limits the spread of technologies beyond a few niche domains, such as defense and astronomy. Among the potential candidates to address the infrared window, mercury chalcogenide (HgX) NCs exhibit the highest potential in terms of performance. In this review, we discuss how material developments have facilitated device enhancements. Because these materials are mainly used for their infrared optical features, we first review the strategies for their colloidal growth and their specific electronic structure. The review is organized considering three main device-related applications: light emission, electronic transport, and infrared photodetection.
纳米晶体(NCs)是少数几种已经实现大规模市场应用的纳米技术之一,它们被用作显示器的光源。这一成功依赖于基于 Cd 和 In 的宽带隙材料。随着 NCs 在更多应用中的使用,它们为光电子学,特别是红外光电子学提供了一个多功能平台。在这个波长范围内,现有的材料技术通常不具有成本效益,这限制了技术在除了防御和天文学等少数利基领域之外的传播。在解决红外窗口的潜在候选材料中,汞硫属化物(HgX)NCs 在性能方面表现出最高的潜力。在这篇综述中,我们讨论了材料的发展如何促进了器件的改进。由于这些材料主要用于其红外光学特性,我们首先回顾了它们的胶体生长和特定电子结构的策略。综述按照三个主要的与器件相关的应用进行组织:发光、电子输运和红外光电探测。