Faculty of Computer Science, Department of Mathematics, University of A Coruña, CITIC, A Coruña, Spain.
Department of Mathematics, Escuela Universitaria Politécnica, University of A Coruña, Ferrol, Spain.
Biom J. 2021 Jun;63(5):984-1005. doi: 10.1002/bimj.202000173. Epub 2021 Mar 1.
We introduce a nonparametric estimator of the conditional survival function in the mixture cure model for right-censored data when cure status is partially known. The estimator is developed for the setting of a single continuous covariate but it can be extended to multiple covariates. It extends the estimator of Beran, which ignores cure status information. We obtain an almost sure representation, from which the strong consistency and asymptotic normality of the estimator are derived. Asymptotic expressions of the bias and variance demonstrate a reduction in the variance with respect to Beran's estimator. A simulation study shows that, if the bandwidth parameter is suitably chosen, our estimator performs better than others for an ample range of covariate values. A bootstrap bandwidth selector is proposed. Finally, the proposed estimator is applied to a real dataset studying survival of sarcoma patients.
我们引入了一种新的非参数估计方法,用于右删失数据下混合治愈模型中部分已知治愈状态的条件生存函数估计。该估计器是针对单连续协变量的情况开发的,但可以扩展到多个协变量。它扩展了 Beran 的估计器,后者忽略了治愈状态信息。我们得到了一个几乎确定的表示,从中推导出了估计器的强一致性和渐近正态性。偏度和方差的渐近表达式表明,与 Beran 的估计器相比,方差有所减小。模拟研究表明,如果适当选择带宽参数,我们的估计器在广泛的协变量值范围内表现优于其他估计器。我们还提出了一种自举带宽选择器。最后,我们将提出的估计器应用于研究肉瘤患者生存的真实数据集。