Bellach A, Kosorok M R, Gilbert P B, Fine J P
Department of Statistics, University of Washington, B313 Padelford Hall, NE Stevens Way, Seattle, Washington 98195, U.S.A.
Department of Biostatistics, University of North Carolina, 3101 McGavran-Greenberg Hall, Chapel Hill, North Carolina 27599, U.S.A.
Biometrika. 2020 Jun 17;107(4):949-964. doi: 10.1093/biomet/asaa034. eCollection 2020 Dec.
Left-truncation poses extra challenges for the analysis of complex time-to-event data. We propose a general semiparametric regression model for left-truncated and right-censored competing risks data that is based on a novel weighted conditional likelihood function. Targeting the subdistribution hazard, our parameter estimates are directly interpretable with regard to the cumulative incidence function. We compare different weights from recent literature and develop a heuristic interpretation from a cure model perspective that is based on pseudo risk sets. Our approach accommodates external time-dependent covariate effects on the subdistribution hazard. We establish consistency and asymptotic normality of the estimators and propose a sandwich estimator of the variance. In comprehensive simulation studies we demonstrate solid performance of the proposed method. Comparing the sandwich estimator with the inverse Fisher information matrix, we observe a bias for the inverse Fisher information matrix and diminished coverage probabilities in settings with a higher percentage of left-truncation. To illustrate the practical utility of the proposed method, we study its application to a large HIV vaccine efficacy trial dataset.
左截断给复杂的事件发生时间数据的分析带来了额外挑战。我们针对左截断和右删失的竞争风险数据提出了一种通用的半参数回归模型,该模型基于一种新颖的加权条件似然函数。针对子分布风险,我们的参数估计对于累积发病率函数是直接可解释的。我们比较了近期文献中的不同权重,并从治愈模型的角度基于伪风险集进行了启发式解释。我们的方法考虑了外部时间相依协变量对分布风险的影响。我们建立了估计量的一致性和渐近正态性,并提出了方差的三明治估计量。在全面的模拟研究中,我们证明了所提出方法的稳健性能。将三明治估计量与逆费舍尔信息矩阵进行比较,我们发现在左截断百分比更高的情况下,逆费舍尔信息矩阵存在偏差且覆盖概率降低。为了说明所提出方法的实际效用,我们研究了其在一个大型HIV疫苗疗效试验数据集上的应用。