Universidade da Coruña, CITIC, MODES, A Coruña, Spain.
Universidade da Coruña, CITIC, ITMATI, MODES, A Coruña, Spain.
Epidemiol Infect. 2021 Apr 27;149:e102. doi: 10.1017/S0950268821000959.
Estimating the lengths-of-stay (LoS) of hospitalised COVID-19 patients is key for predicting the hospital beds' demand and planning mitigation strategies, as overwhelming the healthcare systems has critical consequences for disease mortality. However, accurately mapping the time-to-event of hospital outcomes, such as the LoS in the intensive care unit (ICU), requires understanding patient trajectories while adjusting for covariates and observation bias, such as incomplete data. Standard methods, such as the Kaplan-Meier estimator, require prior assumptions that are untenable given current knowledge. Using real-time surveillance data from the first weeks of the COVID-19 epidemic in Galicia (Spain), we aimed to model the time-to-event and event probabilities of patients' hospitalised, without parametric priors and adjusting for individual covariates. We applied a non-parametric mixture cure model and compared its performance in estimating hospital ward (HW)/ICU LoS to the performances of commonly used methods to estimate survival. We showed that the proposed model outperformed standard approaches, providing more accurate ICU and HW LoS estimates. Finally, we applied our model estimates to simulate COVID-19 hospital demand using a Monte Carlo algorithm. We provided evidence that adjusting for sex, generally overlooked in prediction models, together with age is key for accurately forecasting HW and ICU occupancy, as well as discharge or death outcomes.
估算住院 COVID-19 患者的住院时间(LoS)对于预测医院床位需求和规划缓解策略至关重要,因为使医疗系统不堪重负会对疾病死亡率产生重大影响。然而,准确地映射住院结局的时间事件,如 ICU 的 LoS,需要在调整协变量和观察偏差(如数据不完整)的情况下了解患者的轨迹。标准方法,如 Kaplan-Meier 估计器,需要先验假设,而这些假设在当前知识下是站不住脚的。利用加利西亚(西班牙) COVID-19 流行初期的实时监测数据,我们旨在在没有参数先验的情况下,针对个体协变量对患者住院的时间事件和事件概率进行建模,而不进行参数先验。我们应用了一种非参数混合治愈模型,并将其在估计住院病房(HW)/ICU LoS 方面的性能与常用方法的性能进行了比较,以估计生存率。我们发现,所提出的模型表现优于标准方法,提供了更准确的 ICU 和 HW LoS 估计值。最后,我们应用我们的模型估计值使用蒙特卡罗算法模拟 COVID-19 医院需求。我们提供的证据表明,调整性别(在预测模型中通常被忽视)以及年龄是准确预测 HW 和 ICU 入住率以及出院或死亡结局的关键。