Suppr超能文献

基于新型非凸正则化器的大规模仿射矩阵秩最小化

Large-Scale Affine Matrix Rank Minimization With a Novel Nonconvex Regularizer.

作者信息

Wang Zhi, Liu Yu, Luo Xin, Wang Jianjun, Gao Chao, Peng Dezhong, Chen Wu

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4661-4675. doi: 10.1109/TNNLS.2021.3059711. Epub 2022 Aug 31.

Abstract

Low-rank minimization aims to recover a matrix of minimum rank subject to linear system constraint. It can be found in various data analysis and machine learning areas, such as recommender systems, video denoising, and signal processing. Nuclear norm minimization is a dominating approach to handle it. However, such a method ignores the difference among singular values of target matrix. To address this issue, nonconvex low-rank regularizers have been widely used. Unfortunately, existing methods suffer from different drawbacks, such as inefficiency and inaccuracy. To alleviate such problems, this article proposes a flexible model with a novel nonconvex regularizer. Such a model not only promotes low rankness but also can be solved much faster and more accurate. With it, the original low-rank problem can be equivalently transformed into the resulting optimization problem under the rank restricted isometry property (rank-RIP) condition. Subsequently, Nesterov's rule and inexact proximal strategies are adopted to achieve a novel algorithm highly efficient in solving this problem at a convergence rate of O(1/K) , with K being the iterate count. Besides, the asymptotic convergence rate is also analyzed rigorously by adopting the Kurdyka- ojasiewicz (KL) inequality. Furthermore, we apply the proposed optimization model to typical low-rank problems, including matrix completion, robust principal component analysis (RPCA), and tensor completion. Exhaustively empirical studies regarding data analysis tasks, i.e., synthetic data analysis, image recovery, personalized recommendation, and background subtraction, indicate that the proposed model outperforms state-of-the-art models in both accuracy and efficiency.

摘要

低秩最小化旨在在满足线性系统约束的条件下恢复具有最小秩的矩阵。它可应用于各种数据分析和机器学习领域,如推荐系统、视频去噪和信号处理。核范数最小化是处理该问题的主要方法。然而,这种方法忽略了目标矩阵奇异值之间的差异。为了解决这个问题,非凸低秩正则化器已被广泛使用。不幸的是,现有方法存在不同的缺点,如效率低下和不准确。为了缓解这些问题,本文提出了一种具有新型非凸正则化器的灵活模型。这种模型不仅促进低秩性,而且可以更快、更准确地求解。利用它,原始的低秩问题可以在秩受限等距性质(rank-RIP)条件下等效地转化为所得的优化问题。随后,采用涅斯捷罗夫法则和不精确近端策略来实现一种新颖的算法,该算法以O(1/K)的收敛速度高效地解决此问题,其中K为迭代次数。此外,通过采用库尔迪卡-奥亚谢维奇(KL)不等式严格分析了渐近收敛速度。此外,我们将所提出的优化模型应用于典型的低秩问题,包括矩阵补全、鲁棒主成分分析(RPCA)和张量补全。关于数据分析任务的详尽实证研究,即合成数据分析、图像恢复、个性化推荐和背景减法,表明所提出的模型在准确性和效率方面均优于现有模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验