Suppr超能文献

源自硅切割废料的PSi@SiOx/纳米银复合材料作为锂离子电池的高性能负极材料。

PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries.

作者信息

Xi Fengshuo, Zhang Zhao, Hu Yuxiang, Li Shaoyuan, Ma Wenhui, Chen Xiuhua, Wan Xiaohan, Chong CheeMun, Luo Bin, Wang Lianzhou

机构信息

Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China; Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia.

Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.

出版信息

J Hazard Mater. 2021 Jul 15;414:125480. doi: 10.1016/j.jhazmat.2021.125480. Epub 2021 Feb 22.

Abstract

Integration of photovoltaic (PV) power generation and energy storage has been widely believed to be the ultimate solution for future energy demands. Herein, an ingenious method was reported to make full use of photovoltaic silicon cutting waste (SiCW) natural characters fabricating PSi@SiOx/Nano-Ag composite as anode material for high-performance lithium-ion batteries. The sheet-like structure with nano/micropores and native SiOx layer addressed the volume expansion issues of Si material. Ag nanoparticles greatly enhanced electrical conductivity of composite and promoted Li/e transport. Synergistic effect of the designed PSi@SiOx/Nano-Ag composite contributed outstanding cyclic performance with reversible capacity of 1409mAhg after 500 cycles. Notably, full LIBs with PSi@SiOx/Nano-Ag anode and commercial Li[NiCoMn]O (NCM622) cathode delivered stable capacity of 137.5mAhg at current density of 200 mA g, accompanying with a high energy density of 438 Wh kg. Furthermore, electrochemical Li storage behavior of this PSi@SiOx/Nano-Ag electrode was studied, and reaction mechanism and crystal structure evolution during cycles were also revealed by in-situ XRD analysis. The synthesis method is facile and cost-effective, which paves a novel way towards high-performance Si-based anodes and promising markets for both solar photovoltaic and lithium-ion battery industries.

摘要

光伏发电与储能的集成已被广泛认为是满足未来能源需求的最终解决方案。在此,报道了一种巧妙的方法,即充分利用光伏硅切割废料(SiCW)的天然特性,制备PSi@SiOx/纳米银复合材料作为高性能锂离子电池的负极材料。具有纳米/微孔和天然SiOx层的片状结构解决了硅材料的体积膨胀问题。银纳米颗粒极大地提高了复合材料的电导率,并促进了锂/电子传输。所设计的PSi@SiOx/纳米银复合材料的协同效应贡献了出色的循环性能,500次循环后可逆容量为1409mAh/g。值得注意的是,采用PSi@SiOx/纳米银负极和商用Li[NiCoMn]O(NCM622)正极的全锂离子电池在200 mA/g的电流密度下提供了137.5mAh/g的稳定容量,伴随着438 Wh/kg的高能量密度。此外,研究了该PSi@SiOx/纳米银电极的电化学锂存储行为,并通过原位XRD分析揭示了循环过程中的反应机理和晶体结构演变。该合成方法简便且具有成本效益,为高性能硅基负极以及太阳能光伏和锂离子电池行业的广阔市场开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验