Suppr超能文献

利用社交媒体内容分析和机器学习对区域尺度的绿地满意度进行细粒度评估。

Fine-grained assessment of greenspace satisfaction at regional scale using content analysis of social media and machine learning.

机构信息

College of Architecture and Landscape Architecture, Peking University, Beijing 100871, PR China.

Institute of Geography (Landscape Ecology), Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany.

出版信息

Sci Total Environ. 2021 Jul 1;776:145908. doi: 10.1016/j.scitotenv.2021.145908. Epub 2021 Feb 19.

Abstract

Assessing perceptions of green spaces is of considerable interest to developers aiming for sustainable urbanization. However, there are numerous challenges facing the development of a rapid, effective, and fine-grained method to assess large-scale greenspace perception. Survey-based studies of perception yielded detailed assessments of green spaces but lacked regional comparisons. The few big-data-based studies of greenspace perception lacked fine-grained explorations. Therefore, we used content analysis to interpret perception in two ways: perceived frequency and perceived satisfaction, including overall park satisfaction and satisfaction with individual landscape features. We analyzed social media posts about urban parks in Beijing, China. A structured lexicon was developed to capture detailed landscape features, and machine learning was employed to assess satisfaction levels. Both of these techniques performed well in interpreting greenspace satisfaction from volunteered textual comments. A detailed study of 50 parks demonstrated that overall park satisfaction was positive. Additionally, individual landscape features were more influential than frequency of landscape features in affecting satisfaction. Our framework confirmed the potential of online comments as complementary to traditional surveys in assessing greenspace perception, while enhancing our understanding of this perception on a regional scale. Practically, this study can facilitate sustainable policy-making regarding urban green spaces, specifically through offering a structured landscape-feature lexicon, rapid regional comparison of various parks, and an emphasis on quality rather than quantity of landscape features.

摘要

评估人们对绿色空间的看法对于旨在实现可持续城市化的开发商来说具有重要意义。然而,要开发出一种快速、有效且精细的方法来评估大规模的绿色空间感知,还面临着许多挑战。基于调查的感知研究虽然对绿色空间进行了详细的评估,但缺乏区域比较。少数基于大数据的绿色空间感知研究缺乏精细的探索。因此,我们使用内容分析以两种方式解释感知:感知频率和感知满意度,包括总体公园满意度和对个别景观特征的满意度。我们分析了中国北京城市公园的社交媒体帖子。我们开发了一个结构化的词汇表来捕捉详细的景观特征,并使用机器学习来评估满意度水平。这两种技术都能很好地从志愿者文本评论中解释绿色空间满意度。对 50 个公园的详细研究表明,总体公园满意度为正。此外,景观特征的频率对满意度的影响不如景观特征的满意度大。我们的框架证实了在线评论作为评估绿色空间感知的传统调查的补充的潜力,同时增强了我们对区域尺度上这种感知的理解。实际上,这项研究可以促进城市绿地的可持续政策制定,特别是通过提供结构化的景观特征词汇表、快速比较各种公园的区域差异,以及强调景观特征的质量而不是数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验