Suppr超能文献

用于组织病理学切片稳健域变换的剩余循环生成对抗网络。

Residual cyclegan for robust domain transformation of histopathological tissue slides.

机构信息

Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.

Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud university medical center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.

出版信息

Med Image Anal. 2021 May;70:102004. doi: 10.1016/j.media.2021.102004. Epub 2021 Feb 18.

Abstract

Variation between stains in histopathology is commonplace across different medical centers. This can have a significant effect on the reliability of machine learning algorithms. In this paper, we propose to reduce performance variability by using -consistent generative adversarial (CycleGAN) networks to remove staining variation. We improve upon the regular CycleGAN by incorporating residual learning. We comprehensively evaluate the performance of our stain transformation method and compare its usefulness in addition to extensive data augmentation to enhance the robustness of tissue segmentation algorithms. Our steps are as follows: first, we train a model to perform segmentation on tissue slides from a single source center, while heavily applying augmentations to increase robustness to unseen data. Second, we evaluate and compare the segmentation performance on data from other centers, both with and without applying our CycleGAN stain transformation. We compare segmentation performances in a colon tissue segmentation and kidney tissue segmentation task, covering data from 6 different centers. We show that our transformation method improves the overall Dice coefficient by 9% over the non-normalized target data and by 4% over traditional stain transformation in our colon tissue segmentation task. For kidney segmentation, our residual CycleGAN increases performance by 10% over no transformation and around 2% compared to the non-residual CycleGAN.

摘要

不同医学中心的组织病理学染色差异很常见。这会对机器学习算法的可靠性产生重大影响。在本文中,我们提出使用一致性生成对抗网络(CycleGAN)来消除染色差异,从而降低性能的可变性。我们通过结合残差学习对常规 CycleGAN 进行了改进。我们全面评估了我们的染色转换方法的性能,并将其与广泛的数据增强相结合,以增强组织分割算法的鲁棒性,从而比较了其有用性。我们的步骤如下:首先,我们训练一个模型来对来自单个源中心的组织幻灯片进行分割,同时大量应用增强技术以提高对未见数据的鲁棒性。其次,我们评估并比较了在其他中心的数据上的分割性能,同时应用和不应用我们的 CycleGAN 染色转换。我们在结肠组织分割和肾脏组织分割任务中进行了比较,涵盖了来自 6 个不同中心的数据。我们表明,在我们的结肠组织分割任务中,我们的转换方法比未经归一化的目标数据提高了整体 Dice 系数 9%,比传统的染色转换提高了 4%。对于肾脏分割,我们的残差 CycleGAN 比无变换提高了 10%,比非残差 CycleGAN 提高了约 2%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验