Suppr超能文献

Rice and Arabidopsis homologs of yeast CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4 commonly interact with Polycomb complexes but exert divergent regulatory functions.

机构信息

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.

出版信息

Plant Cell. 2021 Jul 2;33(5):1417-1429. doi: 10.1093/plcell/koab047.

Abstract

Both genetic and epigenetic information must be transferred from mother to daughter cells during cell division. The mechanisms through which information about chromatin states and epigenetic marks like histone 3 lysine 27 trimethylation (H3K27me3) are transferred have been characterized in animals; these processes are less well understood in plants. Here, based on characterization of a dwarf rice (Oryza sativa) mutant (dwarf-related wd40 protein 1, drw1) deficient for yeast CTF4 (CHROMOSOME TRANSMISSION FIDELITY PROTEIN 4), we discovered that CTF4 orthologs in plants use common cellular machinery yet accomplish divergent functional outcomes. Specifically, drw1 exhibited no flowering-related phenotypes (as in the putatively orthologous Arabidopsis thaliana eol1 mutant), but displayed cell cycle arrest and DNA damage responses. Mechanistically, we demonstrate that DRW1 sustains normal cell cycle progression by modulating the expression of cell cycle inhibitors KIP-RELATED PROTEIN 1 (KRP1) and KRP5, and show that these effects are mediated by DRW1 binding their promoters and increasing H3K27me3 levels. Thus, although CTF4 orthologs ENHANCER OF LHP1 1 (EOL1) in Arabidopsis and DRW1 in rice are both expressed uniquely in dividing cells, commonly interact with several Polycomb complex subunits, and promote H3K27me3 deposition, we now know that their regulatory functions diverged substantially during plant evolution. Moreover, our work experimentally illustrates specific targets of CTF4/EOL1/DRW1, their protein-proteininteraction partners, and their chromatin/epigenetic effects in plants.

摘要

相似文献

引用本文的文献

2
GW9 determines grain size and floral organ identity in rice.GW9 决定水稻的粒大小和花器官身份。
Plant Biotechnol J. 2024 Apr;22(4):915-928. doi: 10.1111/pbi.14234. Epub 2023 Nov 20.
4
GR5 acts in the G protein pathway to regulate grain size in rice.GR5 通过作用于 G 蛋白途径来调节水稻的粒长。
Plant Commun. 2024 Jan 8;5(1):100673. doi: 10.1016/j.xplc.2023.100673. Epub 2023 Aug 18.
7
Plant synthetic epigenomic engineering for crop improvement.利用植物合成表观基因组工程改良作物。
Sci China Life Sci. 2022 Nov;65(11):2191-2204. doi: 10.1007/s11427-021-2131-6. Epub 2022 Jul 15.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验