Suppr超能文献

用于预测接受根治性膀胱切除术治疗尿路上皮癌患者结局的全身性炎症反应生物标志物小组。

A panel of systemic inflammatory response biomarkers for outcome prediction in patients treated with radical cystectomy for urothelial carcinoma.

机构信息

Department of Urology, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria.

Department of Urology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.

出版信息

BJU Int. 2022 Feb;129(2):182-193. doi: 10.1111/bju.15379. Epub 2021 Apr 7.

Abstract

OBJECTIVES

To determine the predictive and prognostic value of a panel of systemic inflammatory response (SIR) biomarkers relative to established clinicopathological variables in order to improve patient selection and facilitate more efficient delivery of peri-operative systemic therapy.

MATERIALS AND METHODS

The preoperative serum levels of a panel of SIR biomarkers, including albumin-globulin ratio, neutrophil-lymphocyte ratio, De Ritis ratio, monocyte-lymphocyte ratio and modified Glasgow prognostic score were assessed in 4199 patients treated with radical cystectomy for clinically non-metastatic urothelial carcinoma of the bladder. Patients were randomly divided into a training and a testing cohort. A machine-learning-based variable selection approach (least absolute shrinkage and selection operator regression) was used for the fitting of several multivariable predictive and prognostic models. The outcomes of interest included prediction of upstaging to carcinoma invading bladder muscle (MIBC), lymph node involvement, pT3/4 disease, cancer-specific survival (CSS) and recurrence-free survival (RFS). The discriminatory ability of each model was either quantified by area under the receiver-operating curves or by the C-index. After validation and calibration of each model, a nomogram was created and decision-curve analysis was used to evaluate the clinical net benefit.

RESULTS

For all outcome variables, at least one SIR biomarker was selected by the machine-learning process to be of high discriminative power during the fitting of the models. In the testing cohort, model performance evaluation for preoperative prediction of lymph node metastasis, ≥pT3 disease and upstaging to MIBC showed a 200-fold bootstrap-corrected area under the curve of 67.3%, 73% and 65.8%, respectively. For postoperative prognosis of CSS and RFS, a 200-fold bootstrap corrected C-index of 73.3% and 72.2%, respectively, was found. However, even the most predictive combinations of SIR biomarkers only marginally increased the discriminative ability of the respective model in comparison to established clinicopathological variables.

CONCLUSION

While our machine-learning approach for fitting of the models with the highest discriminative ability incorporated several previously validated SIR biomarkers, these failed to improve the discriminative ability of the models to a clinically meaningful degree. While the prognostic and predictive value of such cheap and readily available biomarkers warrants further evaluation in the age of immunotherapy, additional novel biomarkers are still needed to improve risk stratification.

摘要

目的

确定一组全身性炎症反应 (SIR) 生物标志物相对于既定临床病理变量的预测和预后价值,以改善患者选择并促进更有效地提供围手术期全身治疗。

材料和方法

在接受根治性膀胱切除术治疗临床非转移性膀胱尿路上皮癌的 4199 名患者中,评估了一组 SIR 生物标志物(包括白蛋白-球蛋白比、中性粒细胞-淋巴细胞比、De Ritis 比、单核细胞-淋巴细胞比和改良格拉斯哥预后评分)的术前血清水平。患者被随机分为训练和测试队列。使用基于机器学习的变量选择方法(最小绝对收缩和选择算子回归)拟合了几个多变量预测和预后模型。感兴趣的结果包括预测升级为浸润性膀胱癌 (MIBC)、淋巴结受累、pT3/4 疾病、癌症特异性生存 (CSS) 和无复发生存 (RFS)。通过接受者操作特征曲线下的面积或 C 指数来量化每个模型的区分能力。在验证和校准每个模型后,创建了一个列线图,并使用决策曲线分析来评估临床净效益。

结果

对于所有结局变量,在拟合模型时,机器学习过程至少选择了一种 SIR 生物标志物,具有较高的区分能力。在测试队列中,术前预测淋巴结转移、≥pT3 疾病和升级为 MIBC 的模型性能评估显示,经过 200 次自举校正后,曲线下面积分别为 67.3%、73%和 65.8%。对于术后 CSS 和 RFS 的预后,发现 200 次自举校正后的 C 指数分别为 73.3%和 72.2%。然而,即使是最具预测性的 SIR 生物标志物组合,与既定的临床病理变量相比,也只能略微提高各自模型的区分能力。

结论

虽然我们的机器学习方法拟合了具有最高区分能力的模型,但纳入了几个先前验证过的 SIR 生物标志物,但未能在临床上有意义的程度上提高模型的区分能力。虽然此类廉价且易于获得的生物标志物的预后和预测价值在免疫治疗时代仍需要进一步评估,但仍需要新的生物标志物来改善风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d070/9291893/a39f36857471/BJU-129-182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验