文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

运用机器学习为膀胱癌患者建立术前淋巴结转移模型。

Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma.

机构信息

Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.

Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

BMC Cancer. 2024 Jun 13;24(1):725. doi: 10.1186/s12885-024-12467-4.


DOI:10.1186/s12885-024-12467-4
PMID:38872141
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11170799/
Abstract

BACKGROUND: Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated with radical cystectomy (RC). METHODS: We retrospectively collected demographic, pathological, imaging, and laboratory information of BUC patients who underwent RC and bilateral lymphadenectomy in our institution. Patients were randomly categorized into training set and testing set. Five ML algorithms were utilized to establish prediction models. The performance of each model was assessed by the area under the receiver operating characteristic curve (AUC) and accuracy. Finally, we calculated the corresponding variable coefficients based on the optimal model to reveal the contribution of each variable to LNM. RESULTS: A total of 524 and 131 BUC patients were finally enrolled into training set and testing set, respectively. We identified that the support vector machine (SVM) model had the best prediction ability with an AUC of 0.934 (95% confidence interval [CI]: 0.903-0.964) and accuracy of 0.916 in the training set, and an AUC of 0.855 (95%CI: 0.777-0.933) and accuracy of 0.809 in the testing set. The SVM model contained 14 predictors, and positive lymph node in imaging contributed the most to the prediction of LNM in BUC patients. CONCLUSIONS: We developed and validated the ML models to preoperatively predict LNM in BUC patients treated with RC, and identified that the SVM model with 14 variables had the best performance and high levels of clinical applicability.

摘要

背景:淋巴结转移(LNM)与接受根治性膀胱切除术(RC)治疗的膀胱癌患者的预后较差相关。本研究旨在开发和验证机器学习(ML)模型,以预测接受 RC 和双侧淋巴结清扫术的膀胱癌患者的 LNM。

方法:我们回顾性收集了在我院接受 RC 和双侧淋巴结清扫术的膀胱癌患者的人口统计学、病理学、影像学和实验室信息。患者被随机分为训练集和测试集。使用五种 ML 算法建立预测模型。通过接受者操作特征曲线下面积(AUC)和准确性评估每个模型的性能。最后,我们根据最优模型计算了每个变量的相应系数,以揭示每个变量对 LNM 的贡献。

结果:共有 524 例和 131 例膀胱癌患者最终分别纳入训练集和测试集。我们发现支持向量机(SVM)模型具有最佳的预测能力,在训练集中 AUC 为 0.934(95%置信区间[CI]:0.903-0.964),准确率为 0.916,在测试集中 AUC 为 0.855(95%CI:0.777-0.933),准确率为 0.809。SVM 模型包含 14 个预测因子,影像学中阳性淋巴结对膀胱癌患者 LNM 预测的贡献最大。

结论:我们开发并验证了 ML 模型,以预测接受 RC 治疗的膀胱癌患者的 LNM,并确定了包含 14 个变量的 SVM 模型具有最佳性能和高水平的临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/e583e69c38c7/12885_2024_12467_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/8fe70edd7dbd/12885_2024_12467_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/fe0ad7514509/12885_2024_12467_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/25559d5c6420/12885_2024_12467_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/e583e69c38c7/12885_2024_12467_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/8fe70edd7dbd/12885_2024_12467_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/fe0ad7514509/12885_2024_12467_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/25559d5c6420/12885_2024_12467_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/11170799/e583e69c38c7/12885_2024_12467_Fig4_HTML.jpg

相似文献

[1]
Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma.

BMC Cancer. 2024-6-13

[2]
Development and validation of a preoperative nomogram to predict lymph node metastasis in patients with bladder urothelial carcinoma.

J Cancer Res Clin Oncol. 2023-9

[3]
Clinical Lymphadenopathy in Urothelial Cancer: A Transatlantic Collaboration on Performance of Cross-sectional Imaging and Oncologic Outcomes in Patients Treated with Radical Cystectomy Without Neoadjuvant Chemotherapy.

Eur Urol Focus. 2016-11-23

[4]
Extranodal extension is a powerful prognostic factor in bladder cancer patients with lymph node metastasis.

Eur Urol. 2012-7-20

[5]
Prediction of the Need for an Extended Lymphadenectomy at the Time of Radical Cystectomy in Patients with Bladder Cancer.

Eur Urol Focus. 2021-9

[6]
Predictors of adequate lymph node dissection in patients with non-muscle invasive bladder cancer undergoing radical cystectomy and effect on survival.

Urol Oncol. 2020-10

[7]
Laparoendoscopic Single-Site Radical Cystectomy vs Conventional Laparoscopic Radical Cystectomy for Patient with Bladder Urothelial Carcinoma: Matched Case-Control Analysis.

J Endourol. 2017-12

[8]
Laparoscopic pelvic lymph node dissection system based on preoperative primary tumour stage (T stage) by computed tomography in urothelial bladder cancer: results of a single-institution prospective study.

BJU Int. 2013-1-16

[9]
Effect of delayed radical cystectomy for invasive bladder tumors on lymph node positivity, cancer-specific survival and total survival.

Tumori. 2018-12

[10]
Radical cystectomy and extended pelvic lymphadenectomy: survival of patients with lymph node metastasis above the bifurcation of the common iliac vessels treated with surgery only.

J Urol. 2007-10

引用本文的文献

[1]
Evaluation of gene expression-based predictors of lymph node metastasis in bladder cancer.

Bladder Cancer. 2025-8-21

[2]
Hot Spots in Urogenital Basic Cancer Research and Clinics.

Cancers (Basel). 2025-3-31

[3]
An efficient graph attention framework enhances bladder cancer prediction.

Sci Rep. 2025-4-1

本文引用的文献

[1]
Development and validation of a preoperative nomogram to predict lymph node metastasis in patients with bladder urothelial carcinoma.

J Cancer Res Clin Oncol. 2023-9

[2]
Development and External Validation of a Machine Learning Model for Prediction of Lymph Node Metastasis in Patients with Prostate Cancer.

Eur Urol Oncol. 2023-10

[3]
Prognostic nomogram based on the lymph node metastasis indicators for patients with bladder cancer: A SEER population-based study and external validation.

Cancer Med. 2023-3

[4]
Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma.

Eur Urol Oncol. 2023-6

[5]
A Novel Nomogram for Prediction and Evaluation of Lymphatic Metastasis in Patients With Renal Cell Carcinoma.

Front Oncol. 2022-4-11

[6]
Diagnostic accuracy of preoperative lymph node staging of bladder cancer according to different lymph node locations: A multicenter cohort from the European Association of Urology - Young Academic Urologists.

Urol Oncol. 2022-5

[7]
European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ).

Eur Urol. 2022-1

[8]
Predictive Nomogram and Risk Factors for Lymph Node Metastasis in Bladder Cancer.

Front Oncol. 2021-6-16

[9]
The Genitourinary Pathology Society Update on Classification of Variant Histologies, T1 Substaging, Molecular Taxonomy, and Immunotherapy and PD-L1 Testing Implications of Urothelial Cancers.

Adv Anat Pathol. 2021-7-1

[10]
Integration of clinicopathologic identification and deep transferrable image feature representation improves predictions of lymph node metastasis in prostate cancer.

EBioMedicine. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索