Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan.
Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480 Japan.
Plant Cell Physiol. 2021 Sep 24;62(4):721-731. doi: 10.1093/pcp/pcab030.
In cyanobacteria, the PII protein (the glnB gene product) regulates a number of proteins involved in nitrogen assimilation including PipX, the coactivator of the global nitrogen regulator protein NtcA. In Synechococcus elongatus PCC 7942, construction of a PII-less mutant retaining the wild-type pipX gene is difficult because of the toxicity of uncontrolled action of PipX and the other defect(s) resulting from the loss of PIIper se, but the nature of the PipX toxicity and the PipX-independent defect(s) remains unclear. Characterization of a PipX-less glnB mutant (PD4) in this study showed that the loss of PII increases the sensitivity of PSII to ammonium. Ammonium was shown to stimulate the formation of reactive oxygen species in the mutant cells. The ammonium-sensitive growth phenotype of PD4 was rescued by the addition of an antioxidant α-tocopherol, confirming that photo-oxidative damage was the major cause of the growth defect. A targeted PII mutant retaining wild-type pipX was successfully constructed from the wild-type S. elongatus strain (SPc) in the presence of α-tocopherol. The resulting mutant (PD1X) showed an unusual chlorophyll fluorescence profile, indicating extremely slow reduction and re-oxidation of QA, which was not observed in mutants defective in both glnB and pipX. These results showed that the aberrant action of uncontrolled PipX resulted in an impairment of the electron transport reactions in both the reducing and oxidizing sides of QA.
在蓝藻中,PII 蛋白(glnB 基因产物)调节许多参与氮同化的蛋白质,包括 PipX,它是全局氮调节蛋白 NtcA 的共激活因子。在集胞藻 PCC 7942 中,构建保留野生型 pipX 基因的无 PII 突变体是困难的,因为 PipX 的失控作用和 PII 本身缺失导致的其他缺陷的毒性,但 PipX 毒性和 PipX 不依赖的缺陷的性质仍不清楚。本研究中对无 PipX glnB 突变体(PD4)的特征描述表明,PII 的缺失增加了 PSII 对铵的敏感性。结果表明,铵刺激突变细胞中活性氧的形成。在突变细胞中添加抗氧化剂 α-生育酚可挽救 PD4 的铵敏感生长表型,证实光氧化损伤是生长缺陷的主要原因。在 α-生育酚存在的情况下,从野生型集胞藻菌株(SPc)成功构建了保留野生型 pipX 的靶向 PII 突变体。所得突变体(PD1X)表现出异常的叶绿素荧光谱,表明 QA 的还原和再氧化极其缓慢,这在 glnB 和 pipX 均有缺陷的突变体中未观察到。这些结果表明,失控的 PipX 的异常作用导致 QA 的还原和氧化侧的电子传递反应受损。