Suppr超能文献

石墨烯的宏观和微观润湿性

Macroscopic and Microscopic Wettability of Graphene.

作者信息

Belyaeva Liubov A, Tang Chen, Juurlink Ludo, Schneider Grégory F

机构信息

Faculty of Science, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.

出版信息

Langmuir. 2021 Apr 13;37(14):4049-4055. doi: 10.1021/acs.langmuir.0c02817. Epub 2021 Mar 2.

Abstract

Interactions between water and graphene can be probed on a macroscopic level through wettability by measuring the water contact angle and on a microscopic level through water desorption kinetic studies using surface science methods. The contact angle studies of graphene pinpointed the critical role of sample preparation and measurement conditions in assessing the wettability of graphene. So far, studies of water desorption from graphene under the conditions of ultrahigh vacuum provided superior control over the environment but disregarded the importance of sample preparation. Here, we systematically examined the effect of the morphology of the growth substrate and of the transfer process on the macroscopic and microscopic wettability of graphene. Remarkably, the macroscopic wetting transparency of graphene does not always translate into microscopic wetting transparency, particularly in the case of an atomically defined Cu(111) substrate. Additionally, subtle differences in the type of substrates significantly alter the interactions between graphene and the first monolayer of adsorbed water but have a negligible effect on the apparent macroscopic wettability. This work looks into the correlations between the wetting properties of graphene, both on the macroscopic and microscopic scales, and highlights the importance of sample preparation in understanding the surface chemistry of graphene.

摘要

水与石墨烯之间的相互作用可以通过测量水接触角在宏观层面上通过润湿性进行探究,也可以在微观层面上通过使用表面科学方法进行水脱附动力学研究来探究。石墨烯的接触角研究指出了样品制备和测量条件在评估石墨烯润湿性方面的关键作用。到目前为止,在超高真空条件下对石墨烯水脱附的研究对环境提供了更好的控制,但忽略了样品制备的重要性。在这里,我们系统地研究了生长衬底的形态和转移过程对石墨烯宏观和微观润湿性的影响。值得注意的是,石墨烯的宏观润湿透明度并不总是转化为微观润湿透明度,特别是在原子级定义的Cu(111)衬底的情况下。此外,衬底类型的细微差异会显著改变石墨烯与吸附水的第一单层之间的相互作用,但对表观宏观润湿性的影响可以忽略不计。这项工作研究了石墨烯在宏观和微观尺度上的润湿性质之间的相关性,并强调了样品制备在理解石墨烯表面化学中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3793/8047800/bc6b1c51e02e/la0c02817_0002.jpg

相似文献

1
Macroscopic and Microscopic Wettability of Graphene.
Langmuir. 2021 Apr 13;37(14):4049-4055. doi: 10.1021/acs.langmuir.0c02817. Epub 2021 Mar 2.
2
Wettability of graphene.
Nano Lett. 2013 Apr 10;13(4):1509-15. doi: 10.1021/nl304647t. Epub 2013 Mar 7.
3
Wetting Transparency of Single-Layer Graphene on Liquid Substrates.
Adv Mater. 2024 Jul;36(30):e2403820. doi: 10.1002/adma.202403820. Epub 2024 May 14.
4
Solving the Controversy on the Wetting Transparency of Graphene.
Sci Rep. 2015 Oct 26;5:15526. doi: 10.1038/srep15526.
5
Wettability of partially suspended graphene.
Sci Rep. 2016 Apr 13;6:24237. doi: 10.1038/srep24237.
6
Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure.
J Phys Chem C Nanomater Interfaces. 2016 Feb 4;120(4):2215-2224. doi: 10.1021/acs.jpcc.5b10492. Epub 2016 Jan 7.
7
Wetting transparency of graphene.
Nat Mater. 2012 Jan 22;11(3):217-22. doi: 10.1038/nmat3228.
8
Atomically thin epitaxial template for organic crystal growth using graphene with controlled surface wettability.
Nano Lett. 2015 Apr 8;15(4):2474-84. doi: 10.1021/nl504958e. Epub 2015 Mar 23.
9
Complete wetting of graphene by biological lipids.
Nanoscale. 2016 Mar 14;8(10):5750-4. doi: 10.1039/c6nr00202a.

引用本文的文献

2
Environmentally Friendly and All-Dry Hydrophobic Patterning of Graphene Oxide for Fog Harvesting.
ACS Omega. 2024 Feb 14;9(8):8810-8817. doi: 10.1021/acsomega.3c06197. eCollection 2024 Feb 27.
3
Solvent-activated 3D-printed electrodes and their electroanalytical potential.
Sci Rep. 2023 Dec 20;13(1):22797. doi: 10.1038/s41598-023-49599-9.
4
Interfacial Liquid Water on Graphite, Graphene, and 2D Materials.
ACS Nano. 2023 Jan 10;17(1):51-69. doi: 10.1021/acsnano.2c10215. Epub 2022 Dec 12.

本文引用的文献

1
Insights into graphene wettability transparency by locally probing its surface free energy.
Nanoscale. 2019 Apr 23;11(16):7944-7951. doi: 10.1039/c9nr00155g.
2
Contact angle measurement of free-standing square-millimeter single-layer graphene.
Nat Commun. 2018 Oct 10;9(1):4185. doi: 10.1038/s41467-018-06608-0.
3
Hydrophilicity of Graphene in Water through Transparency to Polar and Dispersive Interactions.
Adv Mater. 2018 Feb;30(6). doi: 10.1002/adma.201703274. Epub 2017 Dec 20.
4
Water Adsorption and Dissociation on Polycrystalline Copper Oxides: Effects of Environmental Contamination and Experimental Protocol.
J Phys Chem B. 2018 Jan 18;122(2):1000-1008. doi: 10.1021/acs.jpcb.7b10732. Epub 2017 Dec 20.
5
Simulations of graphitic nanoparticles at air-water interfaces.
Nanoscale. 2016 Dec 1;8(47):19620-19628. doi: 10.1039/c6nr06475b.
6
Wetting dynamics of a water nanodrop on graphene.
Phys Chem Chem Phys. 2016 Sep 14;18(34):23482-93. doi: 10.1039/c6cp01936f. Epub 2016 Jun 16.
7
Graphene nanodevices for DNA sequencing.
Nat Nanotechnol. 2016 Feb;11(2):127-36. doi: 10.1038/nnano.2015.307.
8
Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond.
Chem Soc Rev. 2016 Feb 7;45(3):476-93. doi: 10.1039/c5cs00512d. Epub 2015 Nov 27.
9
Support effects in the adsorption of water on CVD graphene: an ultra-high vacuum adsorption study.
Chem Commun (Camb). 2015 Jul 21;51(57):11463-6. doi: 10.1039/c5cc03827h.
10
Comparing graphene growth on Cu(111) versus oxidized Cu(111).
Nano Lett. 2015 Feb 11;15(2):917-22. doi: 10.1021/nl5036463. Epub 2015 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验