IEEE J Biomed Health Inform. 2021 Aug;25(8):3061-3072. doi: 10.1109/JBHI.2021.3063080. Epub 2021 Aug 5.
This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or "digital-twins (DT)" using patient medical images. The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients.
Given a volume of patient CT images, iPhantom segments selected anchor organs and structures (e.g., liver, bones, pancreas) using a learning-based model developed for multi-organ CT segmentation. Organs which are challenging to segment (e.g., intestines) are incorporated from a matched phantom template, using a diffeomorphic registration model developed for multi-organ phantom-voxels. The resulting digital-twin phantoms are used to assess organ doses during routine CT exams.
iPhantom was validated on both with a set of XCAT digital phantoms (n = 50) and an independent clinical dataset (n = 10) with similar accuracy. iPhantom precisely predicted all organ locations yielding Dice Similarity Coefficients (DSC) 0.6 - 1 for anchor organs and DSC of 0.3-0.9 for all other organs. iPhantom showed <10% errors in estimated radiation dose for the majority of organs, which was notably superior to the state-of-the-art baseline method (20-35% dose errors).
iPhantom enables automated and accurate creation of patient-specific phantoms and, for the first time, provides sufficient and automated patient-specific dose estimates for CT dosimetry.
The new framework brings the creation and application of CHPs (computational human phantoms) to the level of individual CHPs through automation, achieving wide and precise organ localization, paving the way for clinical monitoring, personalized optimization, and large-scale research.
本研究旨在开发和验证一种新的框架 iPhantom,用于使用患者医学图像自动创建患者特定的体模或“数字孪生(DT)”。该框架用于评估个体患者 CT 成像中对辐射敏感器官的剂量。
给定患者 CT 图像的体积,iPhantom 使用为多器官 CT 分割开发的基于学习的模型对选定的锚定器官和结构(例如肝脏、骨骼、胰腺)进行分割。使用为多器官体素模板开发的变形配准模型从匹配的体模模板中合并难以分割的器官(例如肠道)。使用所得的数字双胞胎体模来评估常规 CT 检查中的器官剂量。
在 XCAT 数字体模(n = 50)和独立的临床数据集(n = 10)上对 iPhantom 进行了验证,其准确性相似。iPhantom 精确地预测了所有器官位置,对于锚定器官的 Dice 相似性系数(DSC)为 0.6-1,对于所有其他器官的 DSC 为 0.3-0.9。对于大多数器官,iPhantom 估计的辐射剂量误差<10%,明显优于最先进的基线方法(20-35%的剂量误差)。
iPhantom 能够自动且准确地创建患者特定的体模,并且首次为 CT 剂量学提供了足够且自动的患者特定剂量估计。
该新框架通过自动化将 CHP(计算人体模型)的创建和应用提升到单个 CHP 的水平,实现了广泛而精确的器官定位,为临床监测、个性化优化和大规模研究铺平了道路。