IEEE Trans Med Imaging. 2018 Aug;37(8):1822-1834. doi: 10.1109/TMI.2018.2806309. Epub 2018 Feb 14.
Automatic segmentation of abdominal anatomy on computed tomography (CT) images can support diagnosis, treatment planning, and treatment delivery workflows. Segmentation methods using statistical models and multi-atlas label fusion (MALF) require inter-subject image registrations, which are challenging for abdominal images, but alternative methods without registration have not yet achieved higher accuracy for most abdominal organs. We present a registration-free deep-learning-based segmentation algorithm for eight organs that are relevant for navigation in endoscopic pancreatic and biliary procedures, including the pancreas, the gastrointestinal tract (esophagus, stomach, and duodenum) and surrounding organs (liver, spleen, left kidney, and gallbladder). We directly compared the segmentation accuracy of the proposed method to the existing deep learning and MALF methods in a cross-validation on a multi-centre data set with 90 subjects. The proposed method yielded significantly higher Dice scores for all organs and lower mean absolute distances for most organs, including Dice scores of 0.78 versus 0.71, 0.74, and 0.74 for the pancreas, 0.90 versus 0.85, 0.87, and 0.83 for the stomach, and 0.76 versus 0.68, 0.69, and 0.66 for the esophagus. We conclude that the deep-learning-based segmentation represents a registration-free method for multi-organ abdominal CT segmentation whose accuracy can surpass current methods, potentially supporting image-guided navigation in gastrointestinal endoscopy procedures.
腹部 CT 图像的自动解剖分割可以支持诊断、治疗计划和治疗实施流程。使用统计模型和多图谱标签融合(MALF)的分割方法需要进行受试者间的图像配准,这对于腹部图像来说具有挑战性,但是无需配准的替代方法尚未为大多数腹部器官实现更高的准确性。我们提出了一种基于无配准深度学习的分割算法,用于导航内镜胰腺和胆道手术中相关的 8 个器官,包括胰腺、胃肠道(食管、胃和十二指肠)和周围器官(肝、脾、左肾和胆囊)。我们在一个包含 90 名受试者的多中心数据集上进行了交叉验证,直接将所提出的方法与现有的深度学习和 MALF 方法的分割准确性进行了比较。该方法在所有器官上的 Dice 评分均显著更高,在大多数器官上的平均绝对距离均更低,包括胰腺的 Dice 评分分别为 0.78 比 0.71、0.74 和 0.74,胃的 Dice 评分分别为 0.90 比 0.85、0.87 和 0.83,食管的 Dice 评分分别为 0.76 比 0.68、0.69 和 0.66。我们得出结论,基于深度学习的分割方法是一种无需配准的多器官腹部 CT 分割方法,其准确性可以超过当前的方法,有可能支持胃肠内镜手术中的图像引导导航。