Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America. Electronic address: https://twitter.com/AnnBrownMD.
Department of Radiology, Confluence Health, Wenatchee, WA, United States of America.
Clin Imaging. 2021 Sep;77:86-91. doi: 10.1016/j.clinimag.2021.02.031. Epub 2021 Feb 24.
To investigate whether textural analysis (TA) of MRI heterogeneity may play a role in the clinical assessment and classification of breast tumors.
For this retrospective study, patients with breast masses ≥1 cm on contrast-enhanced MRI were obtained in 69 women (mean age: 51 years; range 21-78 years) with 77 masses (38 benign, 39 malignant) from 2006 to 2018. The selected single slice sagittal peak post-contrast T1-weighted image was analyzed with commercially available TA software [TexRAD Ltd., UK]. Eight histogram TA parameters were evaluated at various spatial scaling factors (SSF) including mean pixel intensity, standard deviation of the pixel histogram (SD), entropy, mean of the positive pixels (MPP), skewness, kurtosis, sigma, and Tx_sigma. Additional statistical tests were used to determine their predictiveness.
Entropy showed a significant difference between benign and malignant tumors at all textural scales (p < 0.0001) and kurtosis was significant at SSF = 0-5 (p = 0.0026-0.0241). The single best predictor was entropy at SSF = 4 with AUC = 0.80, giving a sensitivity of 95% and specificity of 53%. An AUC of 0.91 was found using a model combining entropy with sigma, which yielded better performance with a sensitivity of 92% and specificity of 79%.
TA of breast masses has the potential to assist radiologists in categorizing tumors as benign or malignant on MRI. Measurements of entropy, kurtosis, and entropy combined with sigma may provide the best predictability.
探讨磁共振成像(MRI)异质性纹理分析(TA)是否在乳腺肿瘤的临床评估和分类中发挥作用。
本回顾性研究纳入了 2006 年至 2018 年间共 69 名女性(平均年龄:51 岁;范围 21-78 岁)的 77 个乳腺肿块(38 个良性,39 个恶性)患者,这些患者的乳腺肿块在对比增强 MRI 上的直径均≥1cm。在单个矢状位对比后 T1 加权峰值图像上,使用商业 TA 软件[英国 TexRAD 有限公司]进行分析。在各种空间缩放因子(SSF)下评估了 8 个直方图 TA 参数,包括平均像素强度、像素直方图标准差(SD)、熵、阳性像素均值(MPP)、偏度、峰度、sigma 和 Tx_sigma。使用额外的统计检验来确定它们的预测性。
在所有纹理尺度上,熵在良性和恶性肿瘤之间均有显著差异(p<0.0001),在 SSF=0-5 时,峰度也有显著差异(p=0.0026-0.0241)。在 SSF=4 时,熵是最佳的单一预测因子,AUC=0.80,其灵敏度为 95%,特异性为 53%。使用熵与 sigma 相结合的模型发现 AUC 为 0.91,其性能更好,灵敏度为 92%,特异性为 79%。
乳腺肿块的 TA 具有辅助放射科医生在 MRI 上对肿瘤进行良性或恶性分类的潜力。熵、峰度和熵与 sigma 相结合的测量值可能具有最佳的预测性。