Suppr超能文献

基于 HTR-DCE 的磁共振序列影像组学分析相较于 BI-RADS 分析在乳腺磁共振病灶的诊断性能上有所提高。

Radiomic analysis of HTR-DCE MR sequences improves diagnostic performance compared to BI-RADS analysis of breast MR lesions.

机构信息

Tenon Hospital, APHP, Sorbonne Université, 75020, Paris, France.

PARCC, INSERM, Université de Paris, F-75015, Paris, France.

出版信息

Eur Radiol. 2021 Jul;31(7):4848-4859. doi: 10.1007/s00330-020-07519-9. Epub 2021 Jan 6.

Abstract

PURPOSE

To assess the diagnostic performance of radiomic analysis using high temporal resolution (HTR)-dynamic contrast enhancement (DCE) MR sequences compared to BI-RADS analysis to distinguish benign from malignant breast lesions.

MATERIALS AND METHODS

We retrospectively analyzed data from consecutive women who underwent breast MRI including HTR-DCE MR sequencing for abnormal enhancing lesions and who had subsequent pathological analysis at our tertiary center. Semi-quantitative enhancement parameters and textural features were extracted. Temporal change across each phase of textural features in HTR-DCE MR sequences was calculated and called "kinetic textural parameters." Statistical analysis by LASSO logistic regression and cross validation was performed to build a model. The diagnostic performance of the radiomic model was compared to the results of BI-RADS MR score analysis.

RESULTS

We included 117 women with a mean age of 54 years (28-88). Of the 174 lesions analyzed, 75 were benign and 99 malignant. Seven semi-quantitative enhancement parameters and 57 textural features were extracted. Regression analysis selected 15 significant variables in a radiomic model (called "malignant probability score") which displayed an AUC = 0.876 (sensitivity = 0.98, specificity = 0.52, accuracy = 0.78). The performance of the malignant probability score to distinguish benign from malignant breast lesions (AUC = 0.876, 95%CI 0.825-0.925) was significantly better than that of BI-RADS analysis (AUC = 0.831, 95%CI 0.769-0.892). The radiomic model significantly reduced false positives (42%) with the same number of missed cancers (n = 2).

CONCLUSION

A radiomic model including kinetic textural features extracted from an HTR-DCE MR sequence improves diagnostic performance over BI-RADS analysis.

KEY POINTS

• Radiomic analysis using HTR-DCE is of better diagnostic performance (AUC = 0.876) than conventional breast MRI reading with BI-RADS (AUC = 0.831) (p < 0.001). • A radiomic malignant probability score under 19.5% gives a negative predictive value of 100% while a malignant probability score over 81% gives a positive predictive value of 100%. • Kinetic textural features extracted from HTR-DCE-MRI have a major role to play in distinguishing benign from malignant breast lesions.

摘要

目的

评估使用高时间分辨率(HTR)-动态对比增强(DCE)MR 序列进行放射组学分析的诊断性能,以区分良性和恶性乳腺病变。

材料和方法

我们回顾性分析了在我们的三级中心连续进行乳腺 MRI 检查的女性数据,包括 HTR-DCE MR 序列用于异常增强病变,并且随后进行了病理分析。提取半定量增强参数和纹理特征。计算 HTR-DCE MR 序列中每个纹理特征的时间变化,并称为“动力学纹理参数”。通过 LASSO 逻辑回归和交叉验证进行统计分析以建立模型。比较放射组学模型的诊断性能与 BI-RADS MR 评分分析的结果。

结果

我们纳入了 117 名年龄 54 岁(28-88 岁)的女性。在分析的 174 个病变中,75 个为良性,99 个为恶性。提取了 7 个半定量增强参数和 57 个纹理特征。回归分析选择了放射组学模型中的 15 个显著变量(称为“恶性概率评分”),其 AUC 为 0.876(敏感性为 0.98,特异性为 0.52,准确性为 0.78)。恶性概率评分区分良性和恶性乳腺病变的性能(AUC 为 0.876,95%CI 0.825-0.925)明显优于 BI-RADS 分析(AUC 为 0.831,95%CI 0.769-0.892)。放射组学模型显著减少了假阳性(42%),同时漏诊的癌症数量相同(n=2)。

结论

包括从 HTR-DCE MR 序列中提取的动力学纹理特征的放射组学模型可提高 BI-RADS 分析的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验