文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米级硬度和胶原纤维恶化:使用峰值力-QNM AFM 探测酶降解后的角膜。

Nano-Scale Stiffness and Collagen Fibril Deterioration: Probing the Cornea Following Enzymatic Degradation Using Peakforce-QNM AFM.

机构信息

Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK.

Department of Biomedical Engineering, College of Engineering, University of Babylon, Babylon, Hillah 51002, Iraq.

出版信息

Sensors (Basel). 2021 Feb 26;21(5):1629. doi: 10.3390/s21051629.


DOI:10.3390/s21051629
PMID:33652583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7956234/
Abstract

Under physiological conditions, the cornea is exposed to various enzymes, some of them have digestive actions, such as amylase and collagenase that may change the ultrastructure (collagen morphology) and sequentially change the mechanical response of the cornea and distort vision, such as in keratoconus. This study investigates the ultrastructure and nanomechanical properties of porcine cornea following incubation with α-amylase and collagenase. Atomic force microscopy (AFM) was used to capture nanoscale topographical details of stromal collagen fibrils (diameter and D-periodicity) and calculate their elastic modulus. Samples were incubated with varying concentrations of α-amylase and collagenase (crude and purified). Dimethylmethylene blue (DMMB) assay was utilised to detect depleted glycosaminoglycans (GAGs) following incubation with amylase. Collagen fibril diameters were decreased following incubation with amylase, but not D-periodicity. Elastic modulus was gradually decreased with enzyme concentration in amylase-treated samples. Elastic modulus, diameter, and D-periodicity were greatly reduced in collagenase-treated samples. The effect of crude collagenase on corneal samples was more pronounced than purified collagenase. Amylase was found to deplete GAGs from the samples. This enzymatic treatment may help in answering some questions related to keratoconus, and possibly be used to build an empirical animal model of keratoconic corneas with different progression levels.

摘要

在生理条件下,角膜暴露于各种酶中,其中一些具有消化作用,例如淀粉酶和胶原酶,它们可能会改变超微结构(胶原形态),并依次改变角膜的机械响应并扭曲视力,例如在圆锥角膜中。本研究调查了在孵育α-淀粉酶和胶原酶后猪角膜的超微结构和纳米力学特性。原子力显微镜(AFM)用于捕获基质胶原纤维的纳米级形貌细节(直径和 D 周期性),并计算其弹性模量。用不同浓度的α-淀粉酶和胶原酶(粗酶和纯酶)孵育样品。用二甲亚甲基蓝(DMMB)测定法检测孵育后淀粉酶消耗的糖胺聚糖(GAG)。孵育后,淀粉酶处理的样品中胶原纤维直径减小,但 D 周期性不变。随着酶浓度的增加,淀粉酶处理的样品中的弹性模量逐渐降低。胶原酶处理的样品中的弹性模量、直径和 D 周期性大大降低。粗胶原酶对角膜样品的影响比纯胶原酶更为明显。淀粉酶被发现从样品中消耗 GAGs。这种酶处理方法可能有助于回答一些与圆锥角膜有关的问题,并可能用于构建不同进展水平的圆锥角膜的经验性动物模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/324c77373ddb/sensors-21-01629-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/1c6cc1762a61/sensors-21-01629-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/9dd86541cc94/sensors-21-01629-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/818604947464/sensors-21-01629-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/1a84a2f204d2/sensors-21-01629-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/d15f08f2eef3/sensors-21-01629-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/66dfa4d39505/sensors-21-01629-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/9eb6b519340c/sensors-21-01629-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/68891aba326c/sensors-21-01629-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/841aa93dc7eb/sensors-21-01629-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/1a7856d58407/sensors-21-01629-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/4ac057b110be/sensors-21-01629-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/99ad6913a2ca/sensors-21-01629-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/324c77373ddb/sensors-21-01629-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/1c6cc1762a61/sensors-21-01629-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/9dd86541cc94/sensors-21-01629-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/818604947464/sensors-21-01629-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/1a84a2f204d2/sensors-21-01629-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/d15f08f2eef3/sensors-21-01629-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/66dfa4d39505/sensors-21-01629-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/9eb6b519340c/sensors-21-01629-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/68891aba326c/sensors-21-01629-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/841aa93dc7eb/sensors-21-01629-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/1a7856d58407/sensors-21-01629-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/4ac057b110be/sensors-21-01629-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/99ad6913a2ca/sensors-21-01629-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afb/7956234/324c77373ddb/sensors-21-01629-g013.jpg

相似文献

[1]
Nano-Scale Stiffness and Collagen Fibril Deterioration: Probing the Cornea Following Enzymatic Degradation Using Peakforce-QNM AFM.

Sensors (Basel). 2021-2-26

[2]
Fibril density reduction in keratoconic corneas.

J R Soc Interface. 2021-2

[3]
The cementum-dentin junction also contains glycosaminoglycans and collagen fibrils.

J Struct Biol. 2005-7

[4]
Revisiting rabbit models for keratoconus: A long-term study on collagenase-induced disease progression.

Exp Eye Res. 2024-4

[5]
The role of KS GAGs in the microstructure of CXL-treated corneal stroma; a transmission electron microscopy study.

Exp Eye Res. 2023-6

[6]
Nanomechanics and ultrastructure of the internal mammary artery adventitia in patients with low and high pulse wave velocity.

Acta Biomater. 2018-4-21

[7]
Changes in collagen fibril pattern and adhesion force with collagenase-induced injury in rat Achilles tendon observed via AFM.

J Nanosci Nanotechnol. 2011-1

[8]
Surface topology of collagen fibrils associated with proteoglycans in mouse cornea and sclera.

Jpn J Ophthalmol. 2000

[9]
Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.

J Biomech. 2012-12-6

[10]
The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy.

Arch Histol Cytol. 2000-5

引用本文的文献

[1]
Topical Application of a Collagen Mimetic Peptide Restores Peripapillary Scleral Stiffness Reduced by Ocular Stress.

Pharmaceuticals (Basel). 2025-6-12

[2]
Biochemical component analysis of human myopic corneal stroma using the Raman spectrum.

Int Ophthalmol. 2024-3-21

[3]
Squishy matters - Corneal mechanobiology in health and disease.

Prog Retin Eye Res. 2024-3

[4]
Collagen Mimetic Peptides Promote Repair of MMP-1-Damaged Collagen in the Rodent Sclera and Optic Nerve Head.

Int J Mol Sci. 2023-12-1

[5]
Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM.

Micromachines (Basel). 2023-1-11

[6]
Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy.

J Mech Behav Biomed Mater. 2023-2

[7]
Atomic Force Microscopy Nanoindentation Method on Collagen Fibrils.

Materials (Basel). 2022-3-27

本文引用的文献

[1]
Microscale assessment of corneal viscoelastic properties under physiological pressures.

J Mech Behav Biomed Mater. 2019-7-29

[2]
Line-Field Optical Coherence Tomography as a tool for In vitro characterization of corneal biomechanics under physiological pressures.

Sci Rep. 2019-4-19

[3]
Keratoconus at a Molecular Level: A Review.

Anat Rec (Hoboken). 2020-6

[4]
Strain mediated enzymatic degradation of arterial tissue: Insights into the role of the non-collagenous tissue matrix and collagen crimp.

Acta Biomater. 2018-7-3

[5]
Nanomechanics and ultrastructure of the internal mammary artery adventitia in patients with low and high pulse wave velocity.

Acta Biomater. 2018-4-21

[6]
Corneal collagen-its role in maintaining corneal shape and transparency.

Biophys Rev. 2009-7

[7]
Loss of stiffness in collagen-rich uterine fibroids after digestion with purified collagenase Clostridium histolyticum.

Am J Obstet Gynecol. 2016-11

[8]
New insight into the shortening of the collagen fibril D-period in human cornea.

J Biomol Struct Dyn. 2016-3-8

[9]
Corneal structure and transparency.

Prog Retin Eye Res. 2015-11

[10]
The materials science of collagen.

J Mech Behav Biomed Mater. 2015-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索