Kontomaris Stylianos Vasileios, Stylianou Andreas, Chliveros Georgios, Malamou Anna
BioNanoTec Ltd., Nicosia 2043, Cyprus.
Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece.
Micromachines (Basel). 2023 Jan 11;14(1):182. doi: 10.3390/mi14010182.
Measuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis. It is expected that AFM techniques will play a key role in the future in disease diagnosis and modeling using rigorous mathematical criteria (i.e., automated user-independent diagnosis). In this review, AFM techniques and mathematical models for determining the spatial variability of elastic properties of biological materials at the nanoscale are presented and discussed. Significant issues concerning the rationality of the elastic half-space assumption, the possibility of monitoring the depth-dependent mechanical properties, and the construction of 3D Young's modulus maps are also presented.
利用原子力显微镜(AFM)在纳米尺度下对生物样品进行压痕测量其力学性能(即杨氏模量方面的弹性),为早期研究和检测包括癌症和骨关节炎在内的各种病理状况开辟了新视野。预计AFM技术未来将在基于严格数学标准(即独立于用户的自动诊断)的疾病诊断和建模中发挥关键作用。在这篇综述中,介绍并讨论了用于确定生物材料纳米尺度弹性特性空间变异性的AFM技术和数学模型。还介绍了有关弹性半空间假设的合理性、监测深度依赖力学性能的可能性以及三维杨氏模量图构建的重要问题。