Suppr超能文献

在马达加斯加农村的伊法纳迪亚,腹泻病的精细空间模式是由社会人口因素而非环境因素导致的风险因素所解释的。

Socio-demographic, not environmental, risk factors explain fine-scale spatial patterns of diarrhoeal disease in Ifanadiana, rural Madagascar.

作者信息

Evans Michelle V, Bonds Matthew H, Cordier Laura F, Drake John M, Ihantamalala Felana, Haruna Justin, Miller Ann C, Murdock Courtney C, Randriamanambtsoa Marius, Raza-Fanomezanjanahary Estelle M, Razafinjato Bénédicte R, Garchitorena Andres C

机构信息

Odum School of Ecology, University of Georgia, Athens, GA, USA.

Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.

出版信息

Proc Biol Sci. 2021 Mar 10;288(1946):20202501. doi: 10.1098/rspb.2020.2501. Epub 2021 Mar 3.

Abstract

Precision health mapping is a technique that uses spatial relationships between socio-ecological variables and disease to map the spatial distribution of disease, particularly for diseases with strong environmental signatures, such as diarrhoeal disease (DD). While some studies use GPS-tagged location data, other precision health mapping efforts rely heavily on data collected at coarse-spatial scales and may not produce operationally relevant predictions at fine enough spatio-temporal scales to inform local health programmes. We use two fine-scale health datasets collected in a rural district of Madagascar to identify socio-ecological covariates associated with childhood DD. We constructed generalized linear mixed models including socio-demographic, climatic and landcover variables and estimated variable importance via multi-model inference. We find that socio-demographic variables, and not environmental variables, are strong predictors of the spatial distribution of disease risk at both individual and commune-level (cluster of villages) spatial scales. Climatic variables predicted strong seasonality in DD, with the highest incidence in colder, drier months, but did not explain spatial patterns. Interestingly, the occurrence of a national holiday was highly predictive of increased DD incidence, highlighting the need for including cultural factors in modelling efforts. Our findings suggest that precision health mapping efforts that do not include socio-demographic covariates may have reduced explanatory power at the local scale. More research is needed to better define the set of conditions under which the application of precision health mapping can be operationally useful to local public health professionals.

摘要

精准健康绘图是一种利用社会生态变量与疾病之间的空间关系来绘制疾病空间分布的技术,尤其适用于具有强烈环境特征的疾病,如腹泻病(DD)。虽然一些研究使用带有GPS标记的位置数据,但其他精准健康绘图工作严重依赖于在粗空间尺度上收集的数据,可能无法在足够精细的时空尺度上产生与实际操作相关的预测,以指导当地的卫生项目。我们使用在马达加斯加一个农村地区收集的两个精细尺度的健康数据集,来确定与儿童腹泻病相关的社会生态协变量。我们构建了广义线性混合模型,包括社会人口、气候和土地覆盖变量,并通过多模型推断估计变量的重要性。我们发现,在个体和社区层面(村庄集群)的空间尺度上,社会人口变量而非环境变量是疾病风险空间分布的强预测因子。气候变量预测了腹泻病的强烈季节性,在较冷、较干燥的月份发病率最高,但无法解释空间模式。有趣的是,国家法定假日的出现对腹泻病发病率的增加具有高度预测性,这凸显了在建模工作中纳入文化因素的必要性。我们的研究结果表明,不包括社会人口协变量的精准健康绘图工作在地方尺度上可能会降低解释力。需要更多的研究来更好地界定在哪些条件下精准健康绘图的应用对当地公共卫生专业人员在实际操作中有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0df0/7934917/74cdabf0ccd9/rspb20202501f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验