Suppr超能文献

一种基于机器学习的对新型烷化剂LP - 184反应的基因特征可区分其潜在的肿瘤适应症。

A machine learning-based gene signature of response to the novel alkylating agent LP-184 distinguishes its potential tumor indications.

作者信息

Kathad Umesh, Kulkarni Aditya, McDermott Joseph Ryan, Wegner Jordan, Carr Peter, Biyani Neha, Modali Rama, Richard Jean-Philippe, Sharma Panna, Bhatia Kishor

机构信息

Lantern Pharma, Inc., 1920 McKinney Ave, 7th floor, Dallas, TX, 75201, USA.

REPROCELL USA Inc., 9000 Virginia Manor Rd, Ste 207, Beltsville, MD, 20705, USA.

出版信息

BMC Bioinformatics. 2021 Mar 2;22(1):102. doi: 10.1186/s12859-021-04040-8.

Abstract

BACKGROUND

Non-targeted cytotoxics with anticancer activity are often developed through preclinical stages using response criteria observed in cell lines and xenografts. A panel of the NCI-60 cell lines is frequently the first line to define tumor types that are optimally responsive. Open data on the gene expression of the NCI-60 cell lines, provides a unique opportunity to add another dimension to the preclinical development of such drugs by interrogating correlations with gene expression patterns. Machine learning can be used to reduce the complexity of whole genome gene expression patterns to derive manageable signatures of response. Application of machine learning in early phases of preclinical development is likely to allow a better positioning and ultimate clinical success of molecules. LP-184 is a highly potent novel alkylating agent where the preclinical development is being guided by a dedicated machine learning-derived response signature. We show the feasibility and the accuracy of such a signature of response by accurately predicting the response to LP-184 validated using wet lab derived IC50s on a panel of cell lines.

RESULTS

We applied our proprietary RADR® platform to an NCI-60 discovery dataset encompassing LP-184 IC50s and publicly available gene expression data. We used multiple feature selection layers followed by the XGBoost regression model and reduced the complexity of 20,000 gene expression values to generate a 16-gene signature leading to the identification of a set of predictive candidate biomarkers which form an LP-184 response gene signature. We further validated this signature and predicted response to an additional panel of cell lines. Considering fold change differences and correlation between actual and predicted LP-184 IC50 values as validation performance measures, we obtained 86% accuracy at four-fold cut-off, and a strong (r = 0.70) and significant (p value 1.36e-06) correlation between actual and predicted LP-184 sensitivity. In agreement with the perceived mechanism of action of LP-184, PTGR1 emerged as the top weighted gene.

CONCLUSION

Integration of a machine learning-derived signature of response with in vitro assessment of LP-184 efficacy facilitated the derivation of manageable yet robust biomarkers which can be used to predict drug sensitivity with high accuracy and clinical value.

摘要

背景

具有抗癌活性的非靶向细胞毒性药物通常在临床前阶段通过观察细胞系和异种移植中的反应标准来开发。NCI-60细胞系组常常是定义最佳反应肿瘤类型的首选。NCI-60细胞系基因表达的公开数据,通过探究与基因表达模式的相关性,为这类药物的临床前开发增添了另一个维度提供了独特机会。机器学习可用于降低全基因组基因表达模式的复杂性,以得出可管理的反应特征。在临床前开发的早期阶段应用机器学习可能会使分子有更好的定位并最终取得临床成功。LP-184是一种高效的新型烷基化剂,其临床前开发由专门的机器学习衍生的反应特征指导。我们通过准确预测在一组细胞系上使用湿实验室得出的IC50对LP-184的反应,展示了这种反应特征的可行性和准确性。

结果

我们将专有的RADR®平台应用于包含LP-184 IC50和公开可用基因表达数据的NCI-60发现数据集。我们使用了多个特征选择层,随后是XGBoost回归模型,并降低了20,000个基因表达值的复杂性,以生成一个16基因特征,从而鉴定出一组预测性候选生物标志物,形成LP-184反应基因特征。我们进一步验证了该特征,并预测了另一组细胞系的反应。将实际和预测的LP-184 IC50值之间的倍数变化差异和相关性作为验证性能指标,我们在四倍截止时获得了86%的准确率,并且实际和预测的LP-184敏感性之间存在强相关性(r = 0.70)且具有显著性(p值为1.36e-06)。与LP-184的作用机制一致,PTGR1成为权重最高的基因。

结论

将机器学习衍生的反应特征与LP-184疗效的体外评估相结合,有助于得出可管理但稳健的生物标志物,可用于高精度和临床价值地预测药物敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5995/7923321/c9d51873db83/12859_2021_4040_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验