Suppr超能文献

使用机器学习和丹麦国家登记处的数据预测性别特异性非致命性自杀企图风险。

Predicting Sex-Specific Nonfatal Suicide Attempt Risk Using Machine Learning and Data From Danish National Registries.

出版信息

Am J Epidemiol. 2021 Dec 1;190(12):2517-2527. doi: 10.1093/aje/kwab112.

Abstract

Suicide attempts are a leading cause of injury globally. Accurate prediction of suicide attempts might offer opportunities for prevention. This case-cohort study used machine learning to examine sex-specific risk profiles for suicide attempts in Danish nationwide registry data. Cases were all persons who made a nonfatal suicide attempt between 1995 and 2015 (n = 22,974); the subcohort was a 5% random sample of the population at risk on January 1, 1995 (n = 265,183). We developed sex-stratified classification trees and random forests using 1,458 predictors, including demographic factors, family histories, psychiatric and physical health diagnoses, surgery, and prescribed medications. We found that substance use disorders/treatment, prescribed psychiatric medications, previous poisoning diagnoses, and stress disorders were important factors for predicting suicide attempts among men and women. Individuals in the top 5% of predicted risk accounted for 44.7% of all suicide attempts among men and 43.2% of all attempts among women. Our findings illuminate novel risk factors and interactions that are most predictive of nonfatal suicide attempts, while consistency between our findings and previous work in this area adds to the call to move machine learning suicide research toward the examination of high-risk subpopulations.

摘要

自杀未遂是全球范围内导致伤害的主要原因。准确预测自杀未遂可能为预防提供机会。本病例-队列研究使用机器学习方法,在丹麦全国登记数据中,研究了自杀未遂的性别特异性风险特征。病例是指在 1995 年至 2015 年间发生非致命性自杀未遂的所有人(n=22974);子队列是 1995 年 1 月 1 日风险人群的 5%随机样本(n=265183)。我们使用 1458 个预测因子(包括人口统计学因素、家族史、精神和身体健康诊断、手术和处方药物),为男性和女性分别开发了分层分类树和随机森林。我们发现,物质使用障碍/治疗、处方精神药物、既往中毒诊断和应激障碍是预测男性和女性自杀未遂的重要因素。预测风险最高的前 5%的个体占男性自杀未遂总数的 44.7%,占女性自杀未遂总数的 43.2%。我们的研究结果阐明了预测非致命性自杀未遂的新的风险因素和相互作用,而我们的研究结果与该领域之前的研究工作的一致性,也进一步呼吁将机器学习自杀研究转向高危亚人群的研究。

相似文献

3
5
Prediction of suicide attempts among persons with depression: a population-based case cohort study.
Am J Epidemiol. 2024 Jun 3;193(6):827-834. doi: 10.1093/aje/kwad237.
7
Sex-Specific Risk Profiles for Suicide Among Persons with Substance Use Disorders in Denmark.
Addiction. 2021 Oct;116(10):2882-2892. doi: 10.1111/add.15455. Epub 2021 Mar 10.
8
The association between first abortion and first-time non-fatal suicide attempt: a longitudinal cohort study of Danish population registries.
Lancet Psychiatry. 2019 Dec;6(12):1031-1038. doi: 10.1016/S2215-0366(19)30400-6. Epub 2019 Nov 19.
10
Stress Disorders and the Risk of Nonfatal Suicide Attempts in the Danish Population.
J Trauma Stress. 2021 Dec;34(6):1108-1117. doi: 10.1002/jts.22695. Epub 2021 May 28.

引用本文的文献

2
Weak and unstable prediction of personality from the structural connectome.
Imaging Neurosci (Camb). 2025 Jan 3;3. doi: 10.1162/imag_a_00416. eCollection 2025.
4
Optimising the use of electronic medical records for large scale research in psychiatry.
Transl Psychiatry. 2024 Jun 1;14(1):232. doi: 10.1038/s41398-024-02911-1.
5
Role of machine learning algorithms in suicide risk prediction: a systematic review-meta analysis of clinical studies.
BMC Med Inform Decis Mak. 2024 May 27;24(1):138. doi: 10.1186/s12911-024-02524-0.
8
Prediction of suicide attempts among persons with depression: a population-based case cohort study.
Am J Epidemiol. 2024 Jun 3;193(6):827-834. doi: 10.1093/aje/kwad237.
10
NSSI questionnaires revisited: A data mining approach to shorten the NSSI questionnaires.
PLoS One. 2023 Apr 21;18(4):e0284588. doi: 10.1371/journal.pone.0284588. eCollection 2023.

本文引用的文献

1
Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis.
Am J Epidemiol. 2021 Sep 1;190(9):1830-1840. doi: 10.1093/aje/kwab010.
2
Syndromic Surveillance of Suicidal Ideation and Self-Directed Violence - United States, January 2017-December 2018.
MMWR Morb Mortal Wkly Rep. 2020 Jan 31;69(4):103-108. doi: 10.15585/mmwr.mm6904a3.
3
4
Machine Learning for Suicide Research-Can It Improve Risk Factor Identification?
JAMA Psychiatry. 2020 Jan 1;77(1):13-14. doi: 10.1001/jamapsychiatry.2019.2896.
5
Win-Win: Reconciling Social Epidemiology and Causal Inference.
Am J Epidemiol. 2020 Mar 2;189(3):167-170. doi: 10.1093/aje/kwz158.
6
PTSD from a suicide attempt: An empirical investigation among suicide attempt survivors.
J Clin Psychol. 2019 Oct;75(10):1879-1895. doi: 10.1002/jclp.22833. Epub 2019 Jul 23.
7
Gender differences in suicidal behavior in adolescents and young adults: systematic review and meta-analysis of longitudinal studies.
Int J Public Health. 2019 Mar;64(2):265-283. doi: 10.1007/s00038-018-1196-1. Epub 2019 Jan 12.
8
Predicting Suicide Attempts and Suicide Deaths Following Outpatient Visits Using Electronic Health Records.
Am J Psychiatry. 2018 Oct 1;175(10):951-960. doi: 10.1176/appi.ajp.2018.17101167. Epub 2018 May 24.
9
Positive predictive value of a register-based algorithm using the Danish National Registries to identify suicidal events.
Pharmacoepidemiol Drug Saf. 2018 Oct;27(10):1131-1138. doi: 10.1002/pds.4433. Epub 2018 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验