Chen Xing, Muhammad Kanhar Ghulam, Madeeha Channa, Fu Wei, Xu Linxin, Hu Yanjie, Liu Jun, Ying Kejing, Chen Liying, Yurievna Gorlova Olga
Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
Zhejiang Sir Run Run Shaw Hospital, Department of Medicine, Zhejiang University, Hangzhou, China.
Lung Cancer. 2021 Apr;154:197-205. doi: 10.1016/j.lungcan.2021.02.006. Epub 2021 Feb 14.
Breath analysis is a promising noninvasive technique that offers a wide range of opportunities to facilitate early diagnosis of lung cancer (LC).
Exhaled breath samples of 352 subjects including 160 with lung cancer (LC), 70 with benign pulmonary nodule (BPN) and 122 healthy controls (HC) were analyzed through thermal desorption coupled with gas chromatography-mass spectrometry (TD-GC-MS) to obtain the metabolic information from volatile organic compounds (VOCs). Statistical classification models were used to find diagnostic clusters of VOCs for the discrimination of HC, BPN and LC patients' early and advanced stages, as well as subtypes of LC. Receiver operator characteristics (ROC) curves with 5-fold validations were used to evaluate the accuracy of these models.
The analysis revealed that 20, 19, 19, and 20 VOCs discriminated LC from HC, LC from BPN, histology and LC stages respectively. The calculated diagnostic indices showed a large area under the curve (AUC) to distinguish HC from LC (AUC: 0.987, 95 % confidence interval (CI): 0.976-0.997), BPN from LC (AUC: 0.809, 95 % CI: 0.758-0.860), NSCLC from SCLC (AUC: 0.939, 95 % CI: 0.875-0.995) and Stage III from stage III-IV (AUC: 0.827, 95 % CI: 0.768-0.886). The comparison between the high-risk groups (BPN and HC smokers) and early stages LC resulted in the AUC of 0.756 (95 %CI: 0.681-0.817) for BPN vs. early stage LC and AUC of 0.986 (95 % CI: 0.972-0.994) for HC smoker vs. early stage LC.
Volatome of breath of the LC patients was significantly different from that of both BPN patients and HC and showed an ability of distinguishing early from advance stage LC and NSCLC from SCLC. We conclude that the volatome has a potential to help improve early diagnosis of LC.
呼吸分析是一种很有前景的非侵入性技术,为促进肺癌(LC)的早期诊断提供了广泛的机会。
通过热脱附结合气相色谱 - 质谱联用(TD - GC - MS)对352名受试者的呼出气体样本进行分析,其中包括160名肺癌患者(LC)、70名良性肺结节患者(BPN)和122名健康对照者(HC),以获取挥发性有机化合物(VOCs)的代谢信息。使用统计分类模型来寻找用于区分HC、BPN以及LC患者早期和晚期阶段以及LC亚型的VOCs诊断聚类。采用5折交叉验证的受试者工作特征(ROC)曲线来评估这些模型的准确性。
分析显示,分别有20种、19种、19种和20种VOCs可区分LC与HC、LC与BPN、组织学类型以及LC分期。计算得出的诊断指标显示,区分HC与LC的曲线下面积(AUC)较大(AUC:0.987,95%置信区间(CI):0.976 - 0.997),区分BPN与LC的AUC为0.809(95%CI:0.758 - 0.860),区分非小细胞肺癌(NSCLC)与小细胞肺癌(SCLC)的AUC为0.939(95%CI:0.875 - 0.995),区分III期与III - IV期的AUC为0.827(95%CI:0.768 - 0.886)。高危组(BPN和HC吸烟者)与早期LC的比较结果显示,BPN与早期LC比较的AUC为0.756(95%CI:0.681 - 0.817),HC吸烟者与早期LC比较的AUC为0.986(95%CI:0.972 - 0.994)。
LC患者的呼出气体挥发性成分与BPN患者和HC的呼出气体挥发性成分有显著差异,并且具有区分LC早期与晚期以及NSCLC与SCLC的能力。我们得出结论,呼出气体挥发性成分有潜力帮助改善LC的早期诊断。