Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.)
Section of Endocrinology, John W. Deming Department of Medicine, Diabetes Discovery and Sex-Based Medicine Laboratory, Tulane University School of Medicine and Southeast Louisiana Veterans Health Care System Medical Center, New Orleans, Louisiana (F.M.-J.); Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), Bielefeld, Germany (H.K.B.); Department of Biomedical Sciences, University of Sassari, Sassari, Italy (I.C.); Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden (J.-J.C.); W. Harry Feinstone Department of Molecular Microbiology and Immunology, the Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland (S.D., S.L.K.); Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy (F.F.); Polyclinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University of Cologne, Cologne, Germany (I.G.-B.); Scioto Biosciences, Indianapolis, Indiana (M.L.H.); Department of Internal Medicine III, Clinical Division of Endocrinology, Metabolism and Gender Medicine, Medical University of Vienna, Vienna and Gender Institute Gars am Kamp, Vienna, Austria (A.K.-W.); Neuroscience Institute, Georgia State University, Atlanta, Georgia (A.M.); Berlin Institute of Gender Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany and University of Zürich, Switzerland (V.R.-Z.); Department of Human Genetics, David Geffen School of Medicine, and the Molecular Biology Institute, University of California, Los Angeles, California (K.R.); and Departments of Medicine, Pediatrics, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (J.B.R.).
Pharmacol Rev. 2021 Apr;73(2):730-762. doi: 10.1124/pharmrev.120.000206.
In humans, the combination of all sex-specific genetic, epigenetic, and hormonal influences of biologic sex produces different in vivo environments for male and female cells. We dissect how these influences of sex modify the pharmacokinetics and pharmacodynamics of multiple drugs and provide examples for common drugs acting on specific organ systems. We also discuss how gender of physicians and patients may influence the therapeutic response to drugs. We aim to highlight sex as a genetic modifier of the pharmacological response to drugs, which should be considered as a necessary step toward precision medicine that will benefit men and women. SIGNIFICANCE STATEMENT: This study discusses the influences of biologic sex on the pharmacokinetics and pharmacodynamics of drugs and provides examples for common drugs acting on specific organ systems. This study also discusses how gender of physicians and patients influence the therapeutic response to drugs.
在人类中,生物性别所有特定于性别的遗传、表观遗传和激素影响的组合为男性和女性细胞产生了不同的体内环境。我们剖析了这些性别的影响如何改变多种药物的药代动力学和药效动力学,并提供了作用于特定器官系统的常见药物的示例。我们还讨论了医生和患者的性别如何影响药物的治疗反应。我们旨在强调性别作为药物药理反应的遗传修饰剂,这应该被视为迈向精准医学的必要步骤,这将使男性和女性受益。
本研究讨论了生物性别对药物的药代动力学和药效动力学的影响,并提供了作用于特定器官系统的常见药物的示例。本研究还讨论了医生和患者的性别如何影响药物的治疗反应。