Gao Yang, Xue Yurui, Qi Lu, Xing Chengyu, Zheng Xuchen, He Feng, Li Yuliang
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, PR China.
Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Jinan, PR China.
Nat Commun. 2022 Sep 5;13(1):5227. doi: 10.1038/s41467-022-32937-2.
The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hexahedral Rh nanocrystals. Experimental results reveal the formation of stable sp-C~Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.
在低过电位下实现大电流密度的高效氢转化代表了该领域的发展趋势。在此,我们报告了一种通过简便合成方法对原子活性位点进行剪裁的方法,该方法以甲酸作为还原剂、石墨炔作为稳定载体,在水溶液中制备出具有明确结构的铑纳米晶体。高分辨率高角度环形暗场扫描透射电子显微镜图像显示,六面体铑纳米晶体表面存在高密度的原子台阶。实验结果表明,稳定的sp-C~Rh键的形成能够稳定铑纳米晶体,并进一步提高体系中的电荷转移能力。实验和密度泛函理论计算结果有力地证明,暴露的高活性台阶表面和各种金属原子位点会影响催化剂的电子结构,从而降低过电位,实现从盐水中大电流制氢。这一令人振奋的结果展示了无与伦比的电催化性能和高度稳定的盐水电解性能。