van der Marel Annemarie, Prasher Sanjay, Carminito Chelsea, O'Connell Claire L, Phillips Alexa, Kluever Bryan M, Hobson Elizabeth A
Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA.
United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL, 32641, USA.
Curr Zool. 2021 Feb;67(1):101-111. doi: 10.1093/cz/zoaa077. Epub 2020 Dec 26.
A multilayer network approach combines different network layers, which are connected by interlayer edges, to create a single mathematical object. These networks can contain a variety of information types and represent different aspects of a system. However, the process for selecting which information to include is not always straightforward. Using data on 2 agonistic behaviors in a captive population of monk parakeets (), we developed a framework for investigating how pooling or splitting behaviors at the scale of dyadic relationships (between 2 individuals) affects individual- and group-level social properties. We designed 2 reference models to test whether randomizing the number of interactions across behavior types results in similar structural patterns as the observed data. Although the behaviors were correlated, the first reference model suggests that the 2 behaviors convey different information about some social properties and should therefore not be pooled. However, once we controlled for data sparsity, we found that the observed measures corresponded with those from the second reference model. Hence, our initial result may have been due to the unequal frequencies of each behavior. Overall, our findings support pooling the 2 behaviors. Awareness of how selected measurements can be affected by data properties is warranted, but nonetheless our framework disentangles these efforts and as a result can be used for myriad types of behaviors and questions. This framework will help researchers make informed and data-driven decisions about which behaviors to pool or separate, prior to using the data in subsequent multilayer network analyses.
多层网络方法将不同的网络层结合起来,这些网络层通过层间边相连,以创建一个单一的数学对象。这些网络可以包含各种信息类型,并表示系统的不同方面。然而,选择包含哪些信息的过程并不总是直截了当的。利用圈养的和尚鹦鹉群体中两种攻击性行为的数据,我们开发了一个框架,用于研究在二元关系(两个个体之间)层面上合并或拆分行为如何影响个体和群体层面的社会属性。我们设计了两个参考模型,以测试对不同行为类型的互动数量进行随机化处理是否会产生与观测数据相似的结构模式。尽管这些行为是相关的,但第一个参考模型表明,这两种行为传达了关于某些社会属性的不同信息,因此不应合并。然而,一旦我们控制了数据稀疏性,我们发现观测到的度量与第二个参考模型的度量相对应。因此,我们最初的结果可能是由于每种行为的频率不平等。总体而言,我们的研究结果支持合并这两种行为。有必要意识到所选度量如何受到数据属性的影响,但尽管如此,我们的框架理清了这些问题,因此可用于各种类型的行为和问题。这个框架将帮助研究人员在后续的多层网络分析中使用数据之前,就是否合并或分离哪些行为做出明智且基于数据的决策。