Suppr超能文献

酵母单细胞RNA测序,逐细胞、逐步骤进行。

Yeast Single-cell RNA-seq, Cell by Cell and Step by Step.

作者信息

Nadal-Ribelles Mariona, Islam Saiful, Wei Wu, Latorre Pablo, Nguyen Michelle, de Nadal Eulàlia, Posas Francesc, Steinmetz Lars M

机构信息

Department of Genetics, Stanford University, School of Medicine, California, USA.

Stanford Genome Technology Center, Stanford University, California, USA.

出版信息

Bio Protoc. 2019 Sep 5;9(17):e3359. doi: 10.21769/BioProtoc.3359.

Abstract

Single-cell RNA-seq (scRNA-seq) has become an established method for uncovering the intrinsic complexity within populations. Even within seemingly homogenous populations of isogenic yeast cells, there is a high degree of heterogeneity that originates from a compact and pervasively transcribed genome. Research with microorganisms such as yeast represents a major challenge for single-cell transcriptomics, due to their small size, rigid cell wall, and low RNA content per cell. Because of these technical challenges, yeast-specific scRNA-seq methodologies have recently started to appear, each one of them relying on different cell-isolation and library-preparation methods. Consequently, each approach harbors unique strengths and weaknesses that need to be considered. We have recently developed a yeast single-cell RNA-seq protocol (yscRNA-seq), which is inexpensive, high-throughput and easy-to-implement, tailored to the unique needs of yeast. yscRNA-seq provides a unique platform that combines single-cell phenotyping via index sorting with the incorporation of unique molecule identifiers on transcripts that allows to digitally count the number of molecules in a strand- and isoform-specific manner. Here, we provide a detailed, step-by-step description of the experimental and computational steps of yscRNA-seq protocol. This protocol will ease the implementation of yscRNA-seq in other laboratories and provide guidelines for the development of novel technologies.

摘要

单细胞RNA测序(scRNA-seq)已成为揭示群体内部固有复杂性的既定方法。即使在看似同质的同基因酵母细胞群体中,也存在高度的异质性,这源于紧凑且普遍转录的基因组。对酵母等微生物进行研究对单细胞转录组学来说是一项重大挑战,这是由于它们体积小、细胞壁坚硬且每个细胞的RNA含量低。由于这些技术挑战,酵母特异性的scRNA-seq方法最近开始出现,每种方法都依赖于不同的细胞分离和文库制备方法。因此,每种方法都有其独特的优缺点,需要加以考虑。我们最近开发了一种酵母单细胞RNA测序方案(yscRNA-seq),它价格低廉、高通量且易于实施,是根据酵母的独特需求量身定制的。yscRNA-seq提供了一个独特的平台,该平台通过索引分选将单细胞表型分析与在转录本上掺入独特分子标识符相结合,从而能够以链特异性和异构体特异性的方式对分子数量进行数字化计数。在这里,我们详细、逐步地描述了yscRNA-seq方案的实验和计算步骤。该方案将便于其他实验室实施yscRNA-seq,并为新技术的开发提供指导。

相似文献

1
Yeast Single-cell RNA-seq, Cell by Cell and Step by Step.
Bio Protoc. 2019 Sep 5;9(17):e3359. doi: 10.21769/BioProtoc.3359.
2
Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations.
Nat Microbiol. 2019 Apr;4(4):683-692. doi: 10.1038/s41564-018-0346-9. Epub 2019 Feb 4.
3
Single-Cell RNA Sequencing in Yeast Using the 10× Genomics Chromium Device.
Methods Mol Biol. 2022;2477:3-20. doi: 10.1007/978-1-0716-2257-5_1.
4
The rise of single-cell transcriptomics in yeast.
Yeast. 2024 Apr;41(4):158-170. doi: 10.1002/yea.3934. Epub 2024 Feb 25.
5
Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy.
Cancer Commun (Lond). 2020 Aug;40(8):329-344. doi: 10.1002/cac2.12078. Epub 2020 Jul 12.
6
Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
Methods Mol Biol. 2021;2284:343-365. doi: 10.1007/978-1-0716-1307-8_19.
7
8
Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers.
PLoS Comput Biol. 2020 Jun 5;16(6):e1007925. doi: 10.1371/journal.pcbi.1007925. eCollection 2020 Jun.
9
Transcript-specific enrichment enables profiling rare cell states via scRNA-seq.
bioRxiv. 2024 Mar 27:2024.03.27.587039. doi: 10.1101/2024.03.27.587039.
10
Comparison of high-throughput single-cell RNA sequencing data processing pipelines.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa116.

引用本文的文献

2
Data-driven identification of inherent features of eukaryotic stress-responsive genes.
NAR Genom Bioinform. 2022 Mar 7;4(1):lqac018. doi: 10.1093/nargab/lqac018. eCollection 2022 Mar.

本文引用的文献

2
Evaluating measures of association for single-cell transcriptomics.
Nat Methods. 2019 May;16(5):381-386. doi: 10.1038/s41592-019-0372-4. Epub 2019 Apr 8.
3
Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations.
Nat Microbiol. 2019 Apr;4(4):683-692. doi: 10.1038/s41564-018-0346-9. Epub 2019 Feb 4.
5
Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
Mol Cell. 2019 Jan 3;73(1):130-142.e5. doi: 10.1016/j.molcel.2018.10.020. Epub 2018 Nov 21.
6
Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress.
PLoS Biol. 2017 Dec 14;15(12):e2004050. doi: 10.1371/journal.pbio.2004050. eCollection 2017 Dec.
8
UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy.
Genome Res. 2017 Mar;27(3):491-499. doi: 10.1101/gr.209601.116. Epub 2017 Jan 18.
9
Classification of low quality cells from single-cell RNA-seq data.
Genome Biol. 2016 Feb 17;17:29. doi: 10.1186/s13059-016-0888-1.
10
A survey of best practices for RNA-seq data analysis.
Genome Biol. 2016 Jan 26;17:13. doi: 10.1186/s13059-016-0881-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验