Suppr超能文献

高通量单细胞 RNA 测序数据处理管道的比较。

Comparison of high-throughput single-cell RNA sequencing data processing pipelines.

机构信息

Xiamen University.

CTO of Aginome Scientific.

出版信息

Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa116.

Abstract

With the development of single-cell RNA sequencing (scRNA-seq) technology, it has become possible to perform large-scale transcript profiling for tens of thousands of cells in a single experiment. Many analysis pipelines have been developed for data generated from different high-throughput scRNA-seq platforms, bringing a new challenge to users to choose a proper workflow that is efficient, robust and reliable for a specific sequencing platform. Moreover, as the amount of public scRNA-seq data has increased rapidly, integrated analysis of scRNA-seq data from different sources has become increasingly popular. However, it remains unclear whether such integrated analysis would be biassed if the data were processed by different upstream pipelines. In this study, we encapsulated seven existing high-throughput scRNA-seq data processing pipelines with Nextflow, a general integrative workflow management framework, and evaluated their performance in terms of running time, computational resource consumption and data analysis consistency using eight public datasets generated from five different high-throughput scRNA-seq platforms. Our work provides a useful guideline for the selection of scRNA-seq data processing pipelines based on their performance on different real datasets. In addition, these guidelines can serve as a performance evaluation framework for future developments in high-throughput scRNA-seq data processing.

摘要

随着单细胞 RNA 测序 (scRNA-seq) 技术的发展,现在可以在单个实验中对成千上万的细胞进行大规模转录谱分析。许多分析管道已经为来自不同高通量 scRNA-seq 平台的数据生成开发,这给用户带来了一个新的挑战,即选择一个高效、稳健和可靠的特定测序平台的适当工作流程。此外,随着公共 scRNA-seq 数据量的快速增加,来自不同来源的 scRNA-seq 数据的综合分析变得越来越流行。然而,如果数据是由不同的上游管道处理的,那么这种综合分析是否会存在偏差仍然不清楚。在这项研究中,我们使用 Nextflow 封装了七个现有的高通量 scRNA-seq 数据处理管道,这是一个通用的综合工作流管理框架,并使用来自五个不同高通量 scRNA-seq 平台的八个公共数据集评估了它们在运行时间、计算资源消耗和数据分析一致性方面的性能。我们的工作为基于不同真实数据集的性能选择 scRNA-seq 数据处理管道提供了有用的指导。此外,这些准则可以作为高通量 scRNA-seq 数据处理未来发展的性能评估框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验