Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Bristish Columbia, Canada.
Nat Methods. 2019 May;16(5):381-386. doi: 10.1038/s41592-019-0372-4. Epub 2019 Apr 8.
Single-cell transcriptomics provides an opportunity to characterize cell-type-specific transcriptional networks, intercellular signaling pathways and cellular diversity with unprecedented resolution by profiling thousands of cells in a single experiment. However, owing to the unique statistical properties of scRNA-seq data, the optimal measures of association for identifying gene-gene and cell-cell relationships from single-cell transcriptomics remain unclear. Here, we conducted a large-scale evaluation of 17 measures of association for their ability to reconstruct cellular networks, cluster cells of the same type and link cell-type-specific transcriptional programs to disease. Measures of proportionality were consistently among the best-performing methods across datasets and tasks. Our analysis provides data-driven guidance for gene and cell network analysis in single-cell transcriptomics.
单细胞转录组学提供了一个机会,可以通过在单个实验中对数千个细胞进行分析,以前所未有的分辨率来描述细胞类型特异性转录网络、细胞间信号通路和细胞多样性。然而,由于 scRNA-seq 数据的独特统计特性,用于从单细胞转录组学中识别基因-基因和细胞-细胞关系的最佳关联度量仍不清楚。在这里,我们对 17 种关联度量方法进行了大规模评估,以评估它们重建细胞网络、聚类同类型细胞以及将细胞类型特异性转录程序与疾病联系起来的能力。比例度量方法在多个数据集和任务中始终是表现最好的方法之一。我们的分析为单细胞转录组学中的基因和细胞网络分析提供了数据驱动的指导。