Suppr超能文献

用于高通量计算机视觉测量微组织收缩的微生理系统。

Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction.

机构信息

Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States.

Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States.

出版信息

ACS Sens. 2021 Mar 26;6(3):985-994. doi: 10.1021/acssensors.0c02172. Epub 2021 Mar 3.

Abstract

The ability to measure microtissue contraction in vitro can provide important information when modeling cardiac, cardiovascular, respiratory, digestive, dermal, and skeletal tissues. However, measuring tissue contraction in vitro often requires the use of high number of cells per tissue construct along with time-consuming microscopy and image analysis. Here, we present an inexpensive, versatile, high-throughput platform to measure microtissue contraction in a 96-well plate configuration using one-step batch imaging. More specifically, optical fiber microprobes are embedded in microtissues, and contraction is measured as a function of the deflection of optical signals emitted from the end of the fibers. Signals can be measured from all the filled wells on the plate simultaneously using a digital camera. An algorithm uses pixel-based image analysis and computer vision techniques for the accurate multiwell quantification of positional changes in the optical microprobes caused by the contraction of the microtissues. Microtissue constructs containing 20,000-100,000 human ventricular cardiac fibroblasts (NHCF-V) in 6 mg/mL collagen type I showed contractile displacements ranging from 20-200 μm. This highly sensitive and versatile platform can be used for the high-throughput screening of microtissues in disease modeling, drug screening for therapeutics, physiology research, and safety pharmacology.

摘要

体外测量微组织收缩的能力在心脏、心血管、呼吸、消化、皮肤和骨骼组织建模时可以提供重要信息。然而,体外测量组织收缩通常需要每个组织构建物使用大量细胞,并结合耗时的显微镜和图像分析。在这里,我们提出了一种廉价、通用、高通量的平台,可使用一步批量成像在 96 孔板配置中测量微组织收缩。更具体地说,光纤微探针嵌入微组织中,收缩程度通过光纤末端发出的光信号的偏折来测量。可以使用数字相机同时测量板上所有填充孔的信号。一种算法使用基于像素的图像分析和计算机视觉技术,对微组织收缩引起的光学微探针的位置变化进行准确的多孔定量分析。含有 20,000-100,000 个人心室心肌成纤维细胞 (NHCF-V) 的 6mg/mL Ⅰ型胶原微组织构建物显示出 20-200μm 的收缩位移。该高灵敏度、通用的平台可用于疾病建模、治疗药物筛选、生理学研究和安全药理学中的微组织高通量筛选。

相似文献

本文引用的文献

3
Intracellular signaling dynamics and their role in coordinating tissue repair.细胞内信号转导动态及其在协调组织修复中的作用。
Wiley Interdiscip Rev Syst Biol Med. 2020 May;12(3):e1479. doi: 10.1002/wsbm.1479. Epub 2020 Feb 8.
4
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
6
Three-dimensional microengineered models of human cardiac diseases.人类心脏疾病的三维微工程模型
J Biol Eng. 2019 Apr 3;13:29. doi: 10.1186/s13036-019-0155-6. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验