Bose Riya, Yin Jun, Zheng Yangzi, Yang Chen, Gartstein Yuri N, Bakr Osman M, Malko Anton V, Mohammed Omar F
Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States.
Advanced Membranes and Porous Materials Center (AMPMC) & KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
J Phys Chem Lett. 2021 Mar 11;12(9):2348-2357. doi: 10.1021/acs.jpclett.0c03729. Epub 2021 Mar 3.
Metal halide perovskites have attracted tremendous attention as promising materials for future-generation optoelectronic devices. Despite their outstanding optical and transport properties, the lack of environmental and operational stability remains a major practical challenge. One of the promising stabilization avenues is metal oxide encapsulation atomic layer deposition (ALD); however, the unavoidable reaction of metal precursors with the perovskite surface in conventional ALD leads to degradation and restructuring of the perovskites' surfaces. This Perspective highlights the development of a modified gas-phase ALD technique for alumina encapsulation that not only prevents perovskites' degradation but also significantly improves their optical properties and air stability. The correlation between precise atomic interactions at the perovskite-metal oxide interface with the dramatically enhanced optical properties is supported by density functional theory calculations, which also underlines the widespread applicability of this gentle technique for a variety of perovskite nanostructures unbarring potential opportunities offered by combination of these approaches.
金属卤化物钙钛矿作为下一代光电器件的有前景材料,已引起了极大关注。尽管它们具有出色的光学和传输特性,但缺乏环境稳定性和操作稳定性仍是一个重大的实际挑战。一种有前景的稳定化途径是金属氧化物封装——原子层沉积(ALD);然而,在传统ALD中金属前驱体与钙钛矿表面不可避免的反应会导致钙钛矿表面的降解和重构。本观点文章重点介绍了一种用于氧化铝封装的改进气相ALD技术的发展,该技术不仅能防止钙钛矿降解,还能显著改善其光学性能和空气稳定性。密度泛函理论计算支持了钙钛矿-金属氧化物界面处精确原子相互作用与显著增强的光学性能之间的相关性,这也强调了这种温和技术对于各种钙钛矿纳米结构的广泛适用性,同时也不排除这些方法组合所带来的潜在机会。