Saraswat Vivek, Jacobberger Robert M, Arnold Michael S
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.
ACS Nano. 2021 Mar 23;15(3):3674-3708. doi: 10.1021/acsnano.0c07835. Epub 2021 Mar 3.
Graphene nanoribbons (GNRs) have recently emerged as promising candidates for channel materials in future nanoelectronic devices due to their exceptional electronic, thermal, and mechanical properties and chemical inertness. However, the adoption of GNRs in commercial technologies is currently hampered by materials science and integration challenges pertaining to synthesis and devices. In this Review, we present an overview of the current status of challenges, recent breakthroughs toward overcoming these challenges, and possible future directions for the field of GNR electronics. We motivate the need for exploration of scalable synthetic techniques that yield atomically precise, placed, registered, and oriented GNRs on CMOS-compatible substrates and stimulate ideas for contact and dielectric engineering to realize experimental performance close to theoretically predicted metrics. We also briefly discuss unconventional device architectures that could be experimentally investigated to harness the maximum potential of GNRs in future spintronic and quantum information technologies.
由于具有卓越的电学、热学、力学性能以及化学惰性,石墨烯纳米带(GNRs)最近已成为未来纳米电子器件沟道材料的有力候选者。然而,目前材料科学以及与合成和器件相关的集成挑战阻碍了GNRs在商业技术中的应用。在本综述中,我们概述了当前面临的挑战的现状、克服这些挑战的近期突破以及GNR电子学领域未来可能的发展方向。我们强调需要探索可扩展的合成技术,以在与CMOS兼容的衬底上制备出原子级精确、定位、对齐且取向的GNRs,并激发有关接触和介电工程的思路,以实现接近理论预测指标的实验性能。我们还简要讨论了非常规器件架构,这些架构可通过实验进行研究,以便在未来的自旋电子学和量子信息技术中充分发挥GNRs的最大潜力。