Wong Han Xuan, Fischer Felix R
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Nano Lett. 2024 Aug 21;24(33):10155-10160. doi: 10.1021/acs.nanolett.4c02329. Epub 2024 Aug 6.
As integrated circuits continue to scale toward the atomic limit, bottom-up processes, such as epitaxial growth, have come to feature prominently in their fabrication. At the same time, chemistry has developed highly tunable molecular semiconductors that can perform the functions of ultimately scaled circuit components. Hybrid techniques that integrate programmable structures comprising molecular components into devices however are sorely lacking. Here we demonstrate a wafer-scale process that directs the localization of a conductive polymer, = 20 kg mol polyaniline, from dilute solutions into 50 nm vertical nanogap device architectures using electric-field-driven self-assembly. The resulting metal-polymer-metal junctions were characterized by electron microscopy, Raman spectroscopy and transport measurements demonstrating that our technique is highly selective, assembling conductive polymers only in electrically activated nanogaps. Our results represent a step toward scalable hybrid nanoelectronics that seamlessly integrate established lithographic top-down fabrication with bottom-up synthesized molecular functional circuit components.
随着集成电路不断向原子极限尺寸缩小,诸如外延生长等自下而上的工艺在其制造过程中变得愈发重要。与此同时,化学领域已开发出高度可调谐的分子半导体,这些半导体能够履行最终缩小尺寸的电路组件的功能。然而,将包含分子组件的可编程结构集成到器件中的混合技术却严重匮乏。在此,我们展示了一种晶圆级工艺,该工艺利用电场驱动的自组装,将导电聚合物(摩尔质量 = 20 kg/mol 的聚苯胺)从稀溶液引导至 50 纳米垂直纳米间隙器件架构中。通过电子显微镜、拉曼光谱和输运测量对所得的金属 - 聚合物 - 金属结进行了表征,结果表明我们的技术具有高度选择性,仅在电激活的纳米间隙中组装导电聚合物。我们的研究结果朝着可扩展的混合纳米电子学迈出了一步,这种混合纳米电子学能够无缝地将成熟的光刻自上而下制造工艺与自下而上合成的分子功能电路组件相结合。