El Abbassi Maria, Perrin Mickael L, Barin Gabriela Borin, Sangtarash Sara, Overbeck Jan, Braun Oliver, Lambert Colin J, Sun Qiang, Prechtl Thorsten, Narita Akimitsu, Müllen Klaus, Ruffieux Pascal, Sadeghi Hatef, Fasel Roman, Calame Michel
Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland.
Department of Physics, University of Basel, CH-4056 Basel, Switzerland.
ACS Nano. 2020 May 26;14(5):5754-5762. doi: 10.1021/acsnano.0c00604. Epub 2020 Apr 6.
Graphene nanoribbons (GNRs) have attracted strong interest from researchers worldwide, as they constitute an emerging class of quantum-designed materials. The major challenges toward their exploitation in electronic applications include reliable contacting, complicated by their small size (<50 nm), and the preservation of their physical properties upon device integration. In this combined experimental and theoretical study, we report on the quantum dot behavior of atomically precise GNRs integrated in a device geometry. The devices consist of a film of aligned five-atom-wide GNRs (5-AGNRs) transferred onto graphene electrodes with a sub 5 nm nanogap. We demonstrate that these narrow-bandgap 5-AGNRs exhibit metal-like behavior at room temperature and single-electron transistor behavior for temperatures below 150 K. By performing spectroscopy of the molecular levels at 13 K, we obtain addition energies in the range of 200-300 meV. DFT calculations predict comparable addition energies and reveal the presence of two electronic states within the bandgap of infinite ribbons when the finite length of the 5-AGNR is accounted for. By demonstrating the preservation of the 5-AGNRs' molecular levels upon device integration, as demonstrated by transport spectroscopy, our study provides a critical step forward in the realization of more exotic GNR-based nanoelectronic devices.
石墨烯纳米带(GNRs)引起了全球研究人员的浓厚兴趣,因为它们构成了一类新兴的量子设计材料。在电子应用中开发利用它们面临的主要挑战包括可靠接触,这因其尺寸小(<50 nm)而变得复杂,以及在器件集成时保持其物理性质。在这项结合实验与理论的研究中,我们报告了集成在器件几何结构中的原子精确GNRs的量子点行为。这些器件由转移到具有亚5 nm纳米间隙的石墨烯电极上的排列好的五原子宽GNRs(5-AGNRs)薄膜组成。我们证明,这些窄带隙5-AGNRs在室温下表现出类似金属的行为,在低于150 K的温度下表现出单电子晶体管行为。通过在13 K下对分子能级进行光谱分析,我们获得了200 - 300 meV范围内的附加能量。密度泛函理论(DFT)计算预测了相当的附加能量,并揭示了当考虑5-AGNR的有限长度时,在无限长纳米带的带隙内存在两个电子态。通过传输光谱证明了5-AGNRs的分子能级在器件集成时得以保留,我们的研究为实现更奇特的基于GNR的纳米电子器件向前迈出了关键一步。