Suppr超能文献

一种用于小野放疗系统准直器几何形状设计的自动化优化策略。

An automated optimization strategy to design collimator geometry for small field radiation therapy systems.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, United States of America.

Department of Radiation Oncology, Indiana University School of Medicine, 535 Barnhill Drive, Indianapolis, IN 46202, United States of America.

出版信息

Phys Med Biol. 2021 Apr 6;66(7). doi: 10.1088/1361-6560/abeba9.

Abstract

. To develop an automated optimization strategy to facilitate collimator design for small-field radiotherapy systems.We developed an objective function that links the dose profile characteristics (FWHM, penumbra, and central dose rate) and the treatment head geometric parameters (collimator thickness/radii, source-to-distal-collimator distance (SDC)) for small-field radiotherapy systems. We performed optimization using a downhill simplex algorithm. We applied this optimization strategy to a linac-based radiosurgery system to determine the optimal geometry of four pencil-beam collimators to produce 5, 10, 15, and 20 mm diameter photon beams (from a 6.7 MeV, 2.1 mm FWHM electron beam). Two different optimizations were performed to prioritize minimum penumbra or maximum central dose rate for each beam size. We compared the optimized geometric parameters and dose distributions to an existing clinical system (CyberKnife).When minimum penumbra was prioritized, using the same collimator thickness and SDC (40 cm) as a CyberKnife system, the optimized collimator upstream and downstream radii agreed with the CyberKnife system within 3%-14%, the optimized output factors agreed within 0%-8%, and the optimized transverse and percentage depth dose profiles matched those of the CyberKnife with the penumbras agreeing within 2%. However, when maximum dose rate was prioritized, allowing both the collimator thickness and SDC to change, the central dose rate for larger collimator sizes (10, 15, 20 mm) could be increased by about 1.5-2 times at the cost of 1.5-2 times larger penumbras. No further improvement in central dose rate for the 5 mm beam size could be achieved.We developed an automated optimization strategy to design the collimator geometry for small-field radiation therapy systems. Using this strategy, the penumbra-prioritized dose distribution and geometric parameters agree well with the CyberKnife system as an example, suggesting that this system was designed to prioritize sharp penumbra. This represents proof-of-principle that an automated optimization strategy may apply to more complex collimator designs with multiple optimization parameters.

摘要

. 为了开发一种自动化的优化策略,以方便小野度放射治疗系统的准直器设计。我们开发了一个目标函数,将剂量分布特性(半高全宽、半影和中央剂量率)与小野度放射治疗系统的治疗头几何参数(准直器厚度/半径、源到远准直器距离(SDC))联系起来。我们使用下坡单纯形算法进行了优化。我们将这种优化策略应用于基于直线加速器的放射外科系统,以确定四个铅笔束准直器的最佳几何形状,以产生 5、10、15 和 20 毫米直径的光子束(来自 6.7 MeV、2.1 毫米 FWHM 电子束)。针对每种光束尺寸,我们进行了两次不同的优化,以优先考虑最小半影或最大中央剂量率。我们将优化后的几何参数和剂量分布与现有的临床系统(CyberKnife)进行了比较。当优先考虑最小半影时,使用与 CyberKnife 系统相同的准直器厚度和 SDC(40 厘米),优化后的上游和下游准直器半径与 CyberKnife 系统的半径相差在 3%-14%之间,优化后的输出因子相差在 0%-8%之间,优化后的横向和百分深度剂量分布与 CyberKnife 的匹配,半影相差在 2%以内。然而,当优先考虑最大剂量率时,允许准直器厚度和 SDC 都发生变化,较大准直器尺寸(10、15、20 毫米)的中央剂量率可以提高约 1.5-2 倍,代价是半影增加 1.5-2 倍。对于 5 毫米光束尺寸,无法进一步提高中央剂量率。我们开发了一种自动化的优化策略,用于设计小野度放射治疗系统的准直器几何形状。使用这种策略,作为示例,优先考虑半影的剂量分布和几何参数与 CyberKnife 系统非常吻合,这表明该系统的设计优先考虑了锐利的半影。这证明了自动化优化策略可以应用于具有多个优化参数的更复杂的准直器设计的原理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验