Suppr超能文献

呼肠孤病毒μ2 C末端环对与工厂形成μNS的结合而言,反向调节NTPase和转录功能,并促进在致瘤细胞中的复制。

The reovirus μ2 C-terminal loop inversely regulates NTPase and transcription functions versus binding to factory-forming μNS and promotes replication in tumorigenic cells.

作者信息

Yip Wan Kong Wynton, Cristi Francisca, Trifonov Georgi, Narayan Nashae, Kubanski Mark, Shmulevitz Maya

机构信息

Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.

Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada

出版信息

J Virol. 2021 Apr 26;95(10). doi: 10.1128/JVI.02006-20. Epub 2021 Mar 3.

Abstract

Wild type reovirus serotype 3 'Dearing PL strain' (T3wt) is being heavily evaluated as an oncolytic and immunotherapeutic treatment for cancers. Mutations that promote reovirus entry into tumor cells were previously reported to enhance oncolysis; herein we aimed to discover mutations that enhance the post-entry steps of reovirus infection in tumor cells. Using directed evolution, we identified that reovirus variant T3v10 exhibited enhanced replication relative to T3wt on a panel of cancer cells. T3v10 contains an alanine-to-valine substitution (A612V) in the core-associated μ2, which was previously found to have NTPase activities in virions and to facilitate virus factory formation by association with μNS. Paradoxically, the A612V mutation in μ2 from T3v10 was discovered to impair NTPase activities and RNA synthesis, leading to five-fold higher probability of abortive infection for T3v10 relative to T3wt. The A612V mutation resides in a previously uncharacterized C-terminal region that juxtaposes the template entry site of the polymerase μ2; our findings thus support an important role for this domain during virus transcription. Despite crippled onset of infection, T3v10 exhibited greater accumulation of viral proteins and progeny during replication, leading to increased overall virus burst size. Both Far-Western and co-immunoprecipitation approaches corroborated that the A612V mutation in μ2 increased association with the non-structural virus protein μNS and enhances burst size. Altogether the data supports that mutations in the C-terminal loop domain of μ2 inversely regulate NTPase and RNA synthesis versus interactions with μNS, but with a net gain of replication in tumorigenic cells.Reovirus is a model system for understanding virus replication but also a clinically relevant virus for cancer therapy. We identified the first mutation that increases reovirus infection in tumorigenic cells by enhancing post-entry stages of reovirus replication. The mutation is in a previously uncharacterized c-terminal region of the M1-derived μ2 protein, which we demonstrated affects multiple functions of μ2; NTPase, RNA synthesis, inhibition of antiviral immune response and association with the virus replication factory-forming μNS protein. These findings promote a mechanistic understanding of viral protein functions. In the future, the benefits of μ2 mutations may be useful for enhancing reovirus potency in tumors.

摘要

野生型呼肠孤病毒3型“迪林PL株”(T3wt)正作为一种癌症溶瘤和免疫治疗方法进行大量评估。先前报道的促进呼肠孤病毒进入肿瘤细胞的突变可增强溶瘤作用;在此,我们旨在发现增强呼肠孤病毒在肿瘤细胞中进入后步骤感染的突变。通过定向进化,我们发现呼肠孤病毒变体T3v10在一组癌细胞上相对于T3wt表现出增强的复制能力。T3v10的核心相关μ2中存在丙氨酸到缬氨酸的取代(A612V),此前发现该蛋白在病毒粒子中具有NTPase活性,并通过与μNS结合促进病毒工厂的形成。矛盾的是,发现T3v10的μ2中的A612V突变会损害NTPase活性和RNA合成,导致T3v10相对于T3wt的流产感染概率高出五倍。A612V突变位于与聚合酶μ2的模板进入位点相邻的一个先前未表征的C末端区域;因此,我们的研究结果支持了该结构域在病毒转录过程中的重要作用。尽管感染起始受损,但T3v10在复制过程中表现出病毒蛋白和子代的积累增加,导致总体病毒爆发量增加。Far-Western和免疫共沉淀方法均证实,μ2中的A612V突变增加了与非结构病毒蛋白μNS的结合并提高了爆发量。总之,数据支持μ2的C末端环结构域中的突变与NTPase和RNA合成呈负相关,而与与μNS的相互作用呈正相关,但在致瘤细胞中复制有净增加。呼肠孤病毒是理解病毒复制的模型系统,也是癌症治疗中具有临床相关性的病毒。我们通过增强呼肠孤病毒复制的进入后阶段,鉴定出了第一个增加呼肠孤病毒在致瘤细胞中感染的突变。该突变位于M1衍生的μ2蛋白的一个先前未表征的C末端区域,我们证明该区域影响μ2的多种功能;NTPase、RNA合成、对抗病毒免疫反应的抑制以及与形成病毒复制工厂的μNS蛋白的结合。这些发现促进了对病毒蛋白功能的机制理解。未来,μ2突变的益处可能有助于提高呼肠孤病毒在肿瘤中的效力。

相似文献

4
Identification of functional domains in reovirus replication proteins muNS and mu2.
J Virol. 2009 Apr;83(7):2892-906. doi: 10.1128/JVI.01495-08. Epub 2009 Jan 28.
7
Gene-specific inhibition of reovirus replication by RNA interference.
J Virol. 2006 Sep;80(18):9053-63. doi: 10.1128/JVI.00276-06.
8
Reovirus Nonstructural Protein σNS Recruits Viral RNA to Replication Organelles.
mBio. 2021 Aug 31;12(4):e0140821. doi: 10.1128/mBio.01408-21. Epub 2021 Jul 6.

引用本文的文献

1
Mathematical modelling of reoviruses in cancer cell cultures.
PLoS One. 2025 Apr 28;20(4):e0318078. doi: 10.1371/journal.pone.0318078. eCollection 2025.
2
Improved oncolytic activity of a reovirus mutant that displays enhanced virus spread due to reduced cell attachment.
Mol Ther Oncolytics. 2023 Nov 2;31:100743. doi: 10.1016/j.omto.2023.100743. eCollection 2023 Dec 19.
3
In situ structures of polymerase complex of mammalian reovirus illuminate RdRp activation and transcription regulation.
Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2203054119. doi: 10.1073/pnas.2203054119. Epub 2022 Dec 5.
4
Reovirus uses temporospatial compartmentalization to orchestrate core versus outercapsid assembly.
PLoS Pathog. 2022 Sep 13;18(9):e1010641. doi: 10.1371/journal.ppat.1010641. eCollection 2022 Sep.
5
Precursors of Viral Proteases as Distinct Drug Targets.
Viruses. 2021 Oct 2;13(10):1981. doi: 10.3390/v13101981.

本文引用的文献

4
Current understanding of reovirus oncolysis mechanisms.
Oncolytic Virother. 2018 Jun 14;7:53-63. doi: 10.2147/OV.S143808. eCollection 2018.
5
Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7344-7349. doi: 10.1073/pnas.1803885115. Epub 2018 Jun 25.
6
Reovirus Nonstructural Protein σNS Acts as an RNA Stability Factor Promoting Viral Genome Replication.
J Virol. 2018 Jul 17;92(15). doi: 10.1128/JVI.00563-18. Print 2018 Aug 1.
7
The dynamics of both filamentous and globular mammalian reovirus viral factories rely on the microtubule network.
Virology. 2018 May;518:77-86. doi: 10.1016/j.virol.2018.02.009. Epub 2018 Feb 20.
8
Reovirus inhibits interferon production by sequestering IRF3 into viral factories.
Sci Rep. 2017 Sep 7;7(1):10873. doi: 10.1038/s41598-017-11469-6.
10
Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network.
Cell Microbiol. 2017 Dec;19(12). doi: 10.1111/cmi.12765. Epub 2017 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验