Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicinegrid.471408.e, Pittsburgh, Pennsylvania, USA.
Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
mBio. 2021 Aug 31;12(4):e0140821. doi: 10.1128/mBio.01408-21. Epub 2021 Jul 6.
The function of the mammalian orthoreovirus (reovirus) σNS nonstructural protein is enigmatic. σNS is an RNA-binding protein that forms oligomers and enhances the stability of bound RNAs, but the mechanisms by which it contributes to reovirus replication are unknown. To determine the function of σNS-RNA binding in reovirus replication, we engineered σNS mutants deficient in RNA-binding capacity. We found that alanine substitutions of positively charged residues in a predicted RNA-binding domain decrease RNA-dependent oligomerization. To define steps in reovirus replication facilitated by the RNA-binding property of σNS, we established a complementation system in which wild-type or mutant forms of σNS could be tested for the capacity to overcome inhibition of σNS expression. Mutations in σNS that disrupt RNA binding also diminish viral replication and σNS distribution to viral factories. Moreover, viral mRNAs only incorporate into viral factories or factory-like structures (formed following expression of nonstructural protein μNS) when σNS is present and capable of binding RNA. Collectively, these findings indicate that σNS requires positively charged residues in a putative RNA-binding domain to recruit viral mRNAs to sites of viral replication and establish a function for σNS in reovirus replication. Viral replication requires the formation of neoorganelles in infected cells to concentrate essential viral and host components. However, for many viruses, it is unclear how these components coalesce into neoorganelles to form factories for viral replication. We discovered that two mammalian reovirus nonstructural proteins act in concert to form functioning viral factories. Reovirus μNS proteins assemble into exclusive factory scaffolds that require reovirus σNS proteins for efficient viral mRNA incorporation. Our results demonstrate a role for σNS in RNA recruitment to reovirus factories and, more broadly, show how a cytoplasmic non-membrane-enclosed factory is formed by an RNA virus. Understanding the mechanisms of viral factory formation will help identify new targets for antiviral therapeutics that disrupt assembly of these structures and inform the use of nonpathogenic viruses for biotechnological applications.
哺乳动物正呼肠孤病毒(呼肠孤病毒)σ NS 非结构蛋白的功能尚不清楚。σ NS 是一种 RNA 结合蛋白,它形成寡聚体并增强结合 RNA 的稳定性,但它促进呼肠孤病毒复制的机制尚不清楚。为了确定 σ NS-RNA 结合在呼肠孤病毒复制中的功能,我们设计了 RNA 结合能力缺陷的 σ NS 突变体。我们发现,预测的 RNA 结合域中带正电荷残基的丙氨酸取代会降低 RNA 依赖性寡聚化。为了确定 σ NS 的 RNA 结合特性促进呼肠孤病毒复制的步骤,我们建立了一个互补系统,在该系统中可以测试野生型或突变型 σ NS 克服 σ NS 表达抑制的能力。破坏 RNA 结合的 σ NS 突变也会减少病毒复制和 σ NS 分布到病毒工厂。此外,只有当 σ NS 存在并且能够结合 RNA 时,病毒 mRNA 才会掺入病毒工厂或工厂样结构(在非结构蛋白 μ NS 表达后形成)。总之,这些发现表明,σ NS 需要在假定的 RNA 结合域中带有正电荷残基,才能将病毒 mRNA 募集到病毒复制部位,并确定 σ NS 在呼肠孤病毒复制中的功能。病毒复制需要在感染细胞中形成新细胞器,以浓缩必需的病毒和宿主成分。然而,对于许多病毒来说,这些成分如何凝聚成新细胞器形成病毒复制的工厂尚不清楚。我们发现,两种哺乳动物呼肠孤病毒非结构蛋白协同作用形成有功能的病毒工厂。呼肠孤病毒 μ NS 蛋白组装成独特的工厂支架,需要呼肠孤病毒 σ NS 蛋白才能有效地掺入病毒 mRNA。我们的研究结果表明 σ NS 在呼肠孤病毒工厂的 RNA 募集中起作用,更广泛地说,展示了一种 RNA 病毒如何形成细胞质非膜封闭的工厂。了解病毒工厂形成的机制将有助于确定破坏这些结构组装的抗病毒治疗新靶点,并为生物技术应用提供使用非致病性病毒的信息。