Suppr超能文献

流动环境中细菌群体感应的涌现鲁棒性

Emergent robustness of bacterial quorum sensing in fluid flow.

机构信息

Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom;

Department of Systems Biology, Harvard Medical School, Boston, MA 02115

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2022312118.

Abstract

Bacteria use intercellular signaling, or quorum sensing (QS), to share information and respond collectively to aspects of their surroundings. The autoinducers that carry this information are exposed to the external environment; consequently, they are affected by factors such as removal through fluid flow, a ubiquitous feature of bacterial habitats ranging from the gut and lungs to lakes and oceans. To understand how QS genetic architectures in cells promote appropriate population-level phenotypes throughout the bacterial life cycle requires knowledge of how these architectures determine the QS response in realistic spatiotemporally varying flow conditions. Here we develop and apply a general theory that identifies and quantifies the conditions required for QS activation in fluid flow by systematically linking cell- and population-level genetic and physical processes. We predict that when a subset of the population meets these conditions, cell-level positive feedback promotes a robust collective response by overcoming flow-induced autoinducer concentration gradients. By accounting for a dynamic flow in our theory, we predict that positive feedback in cells acts as a low-pass filter at the population level in oscillatory flow, allowing a population to respond only to changes in flow that occur over slow enough timescales. Our theory is readily extendable and provides a framework for assessing the functional roles of diverse QS network architectures in realistic flow conditions.

摘要

细菌利用细胞间信号传递,或群体感应(QS),来共享信息并集体响应其周围环境的各个方面。携带这些信息的自动诱导物暴露在外部环境中;因此,它们会受到诸如通过流体流动去除等因素的影响,这是细菌栖息地(从肠道和肺部到湖泊和海洋)的普遍特征。为了了解细胞中 QS 遗传结构如何在整个细菌生命周期中促进适当的群体水平表型,需要了解这些结构如何在现实时空变化的流动条件下确定 QS 反应。在这里,我们开发并应用了一种通用理论,该理论通过系统地将细胞和群体水平的遗传和物理过程联系起来,确定并量化了在流动条件下 QS 激活所需的条件。我们预测,当一部分种群满足这些条件时,细胞水平的正反馈通过克服流动诱导的自动诱导物浓度梯度来促进强大的集体反应。通过在我们的理论中考虑动态流动,我们预测细胞中的正反馈在振荡流中作为群体水平的低通滤波器,允许群体仅对发生在足够缓慢的时间尺度上的流动变化做出响应。我们的理论易于扩展,并为在现实流动条件下评估不同 QS 网络结构的功能角色提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaed/7958174/5cf03558842a/pnas.2022312118fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验