Suppr超能文献

用于高速容积和深部脑成像的双梯度折射率透镜双光子内窥镜检查

Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging.

作者信息

Chien Yu-Feng, Lin Jyun-Yi, Yeh Po-Ting, Hsu Kuo-Jen, Tsai Yu-Hsuan, Chen Shih-Kuo, Chu Shi-Wei

机构信息

Department of Physics, National Taiwan University, Taipei 10617, Taiwan.

Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.

出版信息

Biomed Opt Express. 2020 Dec 8;12(1):162-172. doi: 10.1364/BOE.405738. eCollection 2021 Jan 1.

Abstract

Studying neural connections and activities is fundamental to understanding brain functions. Given the cm-size brain and three-dimensional neural circuit dynamics, deep-tissue, high-speed volumetric imaging is highly desirable for brain study. With sub-micrometer spatial resolution, intrinsic optical sectioning, and deep-tissue penetration capability, two-photon microscopy (2PM) has found a niche in neuroscience. However, the current 2PM typically relies on a slow axial scan for volumetric imaging, and the maximal penetration depth is only about 1 mm. Here, we demonstrate that by integrating a gradient-index (GRIN) lens and a tunable acoustic GRIN (TAG) lens into 2PM, both penetration depth and volume-imaging rate can be significantly improved. Specifically, an ∼ 1-cm long GRIN lens allows imaging relay from any target region of a mouse brain, while a TAG lens provides a sub-second volume rate via a 100 kHz ∼ 1 MHz axial scan. This technique enables the study of calcium dynamics in cm-deep brain regions with sub-cellular and sub-second spatiotemporal resolution, paving the way for interrogating deep-brain functional connectome.

摘要

研究神经连接和活动是理解大脑功能的基础。鉴于大脑尺寸为厘米级且具有三维神经回路动力学,对于大脑研究而言,深部组织的高速体积成像非常必要。双光子显微镜(2PM)具有亚微米级空间分辨率、固有光学切片能力和深部组织穿透能力,在神经科学领域占据了一席之地。然而,当前的2PM通常依靠缓慢的轴向扫描进行体积成像,最大穿透深度仅约1毫米。在此,我们证明通过将梯度折射率(GRIN)透镜和可调谐声学GRIN(TAG)透镜集成到2PM中,穿透深度和体积成像速率均可显著提高。具体而言,一个约1厘米长的GRIN透镜可实现对小鼠大脑任何目标区域的成像中继,而一个TAG透镜通过100 kHz至1 MHz的轴向扫描可提供亚秒级的体积成像速率。该技术能够以亚细胞和亚秒级的时空分辨率研究厘米级深部脑区的钙动力学,为探究深部脑功能连接组铺平了道路。

相似文献

1
Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging.
Biomed Opt Express. 2020 Dec 8;12(1):162-172. doi: 10.1364/BOE.405738. eCollection 2021 Jan 1.
2
TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy.
Adv Sci (Weinh). 2024 Nov;11(41):e2405293. doi: 10.1002/advs.202405293. Epub 2024 Sep 16.
3
Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope.
Biomed Opt Express. 2013 Apr 1;4(5):652-8. doi: 10.1364/BOE.4.000652. Print 2013 May 1.
4
Millisecond two-photon optical ribbon imaging for small-animal functional connectome study.
Opt Lett. 2019 Jul 1;44(13):3190-3193. doi: 10.1364/OL.44.003190.
5
Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain.
Biomed Opt Express. 2017 Aug 10;8(9):4049-4060. doi: 10.1364/BOE.8.004049. eCollection 2017 Sep 1.
6
A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
Neurosci Bull. 2019 Jun;35(3):419-424. doi: 10.1007/s12264-019-00356-x. Epub 2019 Mar 9.
7
Two-photon focal modulation microscopy for high-resolution imaging in deep tissue.
J Biophotonics. 2019 Jan;12(1):e201800247. doi: 10.1002/jbio.201800247. Epub 2018 Nov 7.
9
Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals.
Curr Protoc Neurosci. 2019 Jan;86(1):e56. doi: 10.1002/cpns.56. Epub 2018 Oct 13.
10
Singlet gradient index lens for deep in vivo multiphoton microscopy.
J Biomed Opt. 2012 Feb;17(2):021106. doi: 10.1117/1.JBO.17.2.021106.

引用本文的文献

2
TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy.
Adv Sci (Weinh). 2024 Nov;11(41):e2405293. doi: 10.1002/advs.202405293. Epub 2024 Sep 16.
3
Examining a punishment-related brain circuit with miniature fluorescence microscopes and deep learning.
Addict Neurosci. 2024 Jun;11. doi: 10.1016/j.addicn.2024.100154. Epub 2024 Apr 16.
4
More than double the fun with two-photon excitation microscopy.
Commun Biol. 2024 Mar 26;7(1):364. doi: 10.1038/s42003-024-06057-0.
5
Photonic neural probe enabled microendoscopes for light-sheet light-field computational fluorescence brain imaging.
Neurophotonics. 2024 Sep;11(Suppl 1):S11503. doi: 10.1117/1.NPh.11.S1.S11503. Epub 2024 Feb 6.
6
Optrode recording of an entorhinal-cortical circuit in freely moving mice.
Biomed Opt Express. 2023 Apr 4;14(5):1911-1922. doi: 10.1364/BOE.487191. eCollection 2023 May 1.
7
Two decades of astrocytes in neurovascular coupling.
Front Netw Physiol. 2023 Apr 3;3:1162757. doi: 10.3389/fnetp.2023.1162757. eCollection 2023.
8
Modern Microscopic Approaches to Astrocytes.
Int J Mol Sci. 2023 Mar 20;24(6):5883. doi: 10.3390/ijms24065883.
9
GRIN lens applications for studying neurobiology of substance use disorder.
Addict Neurosci. 2022 Dec;4. doi: 10.1016/j.addicn.2022.100049. Epub 2022 Nov 24.
10
Imaging Synaptic Density: The Next Holy Grail of Neuroscience?
Front Neurosci. 2022 Mar 25;16:796129. doi: 10.3389/fnins.2022.796129. eCollection 2022.

本文引用的文献

1
All-Optical Volumetric Physiology for Connectomics in Dense Neuronal Structures.
iScience. 2019 Dec 20;22:133-146. doi: 10.1016/j.isci.2019.11.011. Epub 2019 Nov 9.
2
Complex vectorial optics through gradient index lens cascades.
Nat Commun. 2019 Sep 19;10(1):4264. doi: 10.1038/s41467-019-12286-3.
3
Millisecond two-photon optical ribbon imaging for small-animal functional connectome study.
Opt Lett. 2019 Jul 1;44(13):3190-3193. doi: 10.1364/OL.44.003190.
4
Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion.
J Cereb Blood Flow Metab. 2020 Mar;40(3):501-512. doi: 10.1177/0271678X19831016. Epub 2019 Mar 4.
6
The NIH BRAIN Initiative: Advancing neurotechnologies, integrating disciplines.
PLoS Biol. 2018 Nov 26;16(11):e3000066. doi: 10.1371/journal.pbio.3000066. eCollection 2018 Nov.
7
Neuronal Representation of Social Information in the Medial Amygdala of Awake Behaving Mice.
Cell. 2017 Nov 16;171(5):1176-1190.e17. doi: 10.1016/j.cell.2017.10.015. Epub 2017 Oct 26.
8
Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain.
Biomed Opt Express. 2017 Aug 10;8(9):4049-4060. doi: 10.1364/BOE.8.004049. eCollection 2017 Sep 1.
10
multiphoton imaging of a diverse array of fluorophores to investigate deep neurovascular structure.
Biomed Opt Express. 2017 Jun 28;8(7):3470-3481. doi: 10.1364/BOE.8.003470. eCollection 2017 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验