Broomer Matthew C, Beacher Nicholas J, Wang Michael W, Lin Da-Ting
Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
Addict Neurosci. 2024 Jun;11. doi: 10.1016/j.addicn.2024.100154. Epub 2024 Apr 16.
In humans experiencing substance use disorder (SUD), abstinence from drug use is often motivated by a desire to avoid some undesirable consequence of further use: health effects, legal ramifications, etc. This process can be experimentally modeled in rodents by training and subsequently punishing an operant response in a context-induced reinstatement procedure. Understanding the biobehavioral mechanisms underlying punishment learning is critical to understanding both abstinence and relapse in individuals with SUD. To date, most investigations into the neural mechanisms of context-induced reinstatement following punishment have utilized discrete loss-of-function manipulations that do not capture ongoing changes in neural circuitry related to punishment-induced behavior change. Here, we describe a two-pronged approach to analyzing the biobehavioral mechanisms of punishment learning using miniature fluorescence microscopes and deep learning algorithms. We review recent advancements in both techniques and consider a target neural circuit.
在患有物质使用障碍(SUD)的人类中,戒毒往往是出于避免进一步使用毒品带来的一些不良后果的愿望,如健康影响、法律后果等。这个过程可以在啮齿动物身上通过在情境诱导复吸程序中训练并随后惩罚操作性反应来进行实验模拟。理解惩罚学习背后的生物行为机制对于理解患有SUD的个体的戒毒和复吸都至关重要。迄今为止,大多数关于惩罚后情境诱导复吸的神经机制的研究都采用了离散的功能丧失操作,这些操作无法捕捉与惩罚诱导的行为变化相关的神经回路的持续变化。在这里,我们描述了一种使用微型荧光显微镜和深度学习算法来分析惩罚学习的生物行为机制的双管齐下的方法。我们回顾了这两种技术的最新进展,并考虑了一个目标神经回路。